
Real-Time Systems for Multi-Processor Architectures∗

Éric Piel Philippe Marquet Julien Soula Jean-Luc Dekeyser

Laboratoire d'informatique fondamentale de Lille
Université des sciences et technologies de Lille

France
Firstname.Lastname@lifl.fr

Abstract

The ARTiS system is a real-time extension of the
GNU/Linux scheduler dedicated to SMP (Symmetric
Multi-Processors) systems. It allows to mix High Per-
formance Computing and Real-Time. ARTiS exploits
the SMP architecture to guarantee the preemption of a
processor when the system has to schedule a real-time
task. The implementation is available as a modi�cation
of the Linux kernel.

The basic idea of ARTiS is to assign a selected set of
processors to real-time operations. A migration mecha-
nism of non-preemptible tasks insures a latency level on
these real-time processors. Furthermore, speci�c load-
balancing strategies permit ARTiS to bene�t from the
full power of the SMP systems: the real-time reserva-
tion, while guaranteed, is not exclusive and does not
imply a waste of resources.

1 Introduction

Historically, the notions of High Performance Com-
puting and of Real-Time have often been considered
antinomic, the latter one being mostly only associated
to embedded devices. Nowadays, the number of ap-
plications which can bene�t from both properties at
the same time is constantly increasing, in particular in
the �elds of multimedia and of communication. Con-
currently, hardware parallelism is not anymore only a
solution to bring more performance, but also to reduce
energy consumption [2]. To our knowledge, there are
still no well de�ned system that can provide both ben-
e�ts at the same time. In this article, we will describe

∗This work is partially supported by the ITEA project 01010,

HYADES

a software solution based on multi-processor computer
which strives to make those both properties cohabit.

1.1 Multi-Processing and Real-time Ap-
proaches

The usage of SMP (Symmetric Multi-Processors) to
face computational power need is a well known and
e�ective solution. It has already been experimented
in the real-time context [1]. To take advantage of an
SMP architecture, an operating system needs to take
into account the shared memory facility, the migration
and load-balancing between processors, and the com-
munication patterns between tasks. The complexity
of such an operating system makes it look more like a
general purpose operating system (GPOS) than a ded-
icated real-time operating system (RTOS). An RTOS
on SMP machines must implement all these mecha-
nisms and consider how they interfere with the hard
real-time constraints.

In their review of current RTOS's, Stankovic and
Rajkumar [11] describe a full taxonomy of OS's. The
OS's developed from scratch are endanger species
mainly because of the complexity to implement all the
features now required by developers.

A more powerful approach is to have a re-usable
OS from which the developer can compose by selecting
components. RTEMS [8, 12] is an example to this, it is
an Open-Source dedicated RTOS that supports multi-
processor systems. Still, SMP support is limited, as
tasks are bound to a CPU during the design phase.

Research kernels are OS's which were designed in or-
der to present one or several new paradigms to handle a
given problem. Although it might be a good approach
either when the current solutions are very poor or the
new paradigm would be much easier to understand or
to use, it is not always e�cient to force users to en-

tirely re-consider the system organization (for instance
by providing a complete new API set or by introducing
new concepts).

Another approach is to add real-time extensions to
a GPOS. This has the advantage of providing to the
users all the facilities of the later one, including better
development softwares. The following subsection will
detail the di�erent alternatives of this approach by us-
ing Linux as the original GPOS.

1.2 Real-time With Linux

The Linux kernel is able to e�ciently manage SMP
platforms, but it has never been designed as an RTOS.
McKenney [6] has described in detail the broad number
of solutions that �ourished along the last few years.

A well known solution that adds real-time capabil-
ities to the Linux kernel is the so-called co-kernel ap-
proach. Such a Linux extension consists in a small real-
time kernel that provides the real-time services and
which runs the standard Linux kernel as a nested OS by
considering it as the lowest priority task. RTLinux [14]
and RTAI [4] are two famous systems based on this
principle. The main drawbacks are the necessity of
developing real-time programs dealing with two di�er-
ent OS instances (with di�erent APIs) and the limited
support of SMP architectures.

A somewhat opposite solution is to improve the
latencies by improving the kernel itself. An option
called �kernel preemption�, which is already available
in the mainstream Linux kernel [7], allows a reduc-
tion of the latency targeted by multimedia applications.
Currently Ingo Molnar is developing a patch called
�preempt-rt� which focuses on hard real-time latencies.
The objective is to allow everything be preempted, in-
cluding critical sections and interrupt handlers. The
drawback is the degradation of performance for some
system calls as well as the high technical di�culty to
write and verify those modi�cations.

Finally, an other solution relies on the shielded
processors or Asymmetric Multi-Processing principle
(AMP). On such a system, which is based on a multi-
processor machine, the processors are specialized to
real-time or not. Concurrent Computer Corporation
RedHawk Linux variant [3] follows this principle. It
has the advantage of being designed from the ground
with both the support of multi-processor (which can
bring HPC) and the respect of real-time properties.
However, since only RT tasks are allowed to run on
shielded CPUs, if those tasks are not consuming all
the available power then there is free CPU time which
is lost. The ARTiS scheduler extends this approach
by also allowing normal tasks to be executed on those

processors as long as they are not endangering the real-
time properties.

In this article, we start by de�ning the principles of
ARTiS, then follows a description of our ARTiS imple-
mentation in the Linux kernel and the deployment of
this implementation. Finally, the last section presents
experimental validation of the �nal implementation, fo-
cusing on three di�erent aspects of the system, the in-
terrupt latencies, the execution time variation and the
load-balancing correctness.

2 ARTiS: Asymmetric Real-Time

Scheduler

ARTiS is a real-time Linux extension that targets
SMPs. Furthermore, ARTiS promotes a user-space
programming model of the real-time tasks: program-
mers use the usual POSIX and/or Linux API to de�ne
their applications. ARTiS real-time tasks are real-time
in the sense that they are identi�ed with a high pri-
ority and are not perturbed by any non real-time ac-
tivities. For these tasks, we are targeting a maximum
response time below 300µs. This limit was obtained af-
ter a study by the industrial partners concerning their
requirements.

The ARTiS solution keeps the interests of both
GPOS's and RTOS's by establishing on the SMP plat-
form an Asymmetric Real-Time Scheduler in Linux.
ARTiS keeps the full Linux facilities for each process
as well as the SMP Linux properties but also improves
the real-time behavior. The core of the ARTiS solution
is based on a strong distinction between real-time and
non-real-time processors and also on migrating tasks
which attempt to disable the preemption on a real-
time processor. An example of typical architecture of
a system based on ARTiS is presented in �gure 1.

2.1 Partition of the Processors and Pro-
cesses

Processors are partitioned into two sets, an NRT
CPU set (Non-Real-Time) and an RT CPU set (Real-
Time). Each one has a particular scheduling policy.
The purpose is to insure the best interrupt latency for
particular processes running in the RT CPU set.

Two classes of processes are de�ned. The processes
with no particular real-time constraints are called, in
our implementation, Linux tasks. The processes with
real-time constraints are called RT tasks. Precisely, de-
pending on their priority, they are called RT0, RT1...
or RT99, from the highest priority to the lowest one.
Due to technical reasons which we will expose just af-
ter, this second type of processes is further divided in

load−
balancing

load−
balancing

cluster

migration
ARTiS

migration
ARTiS

RT1+

RT CPURT CPURT CPUNRT CPU

RT0

Linux

Figure 1. Example of a typical usage of a system based on ARTiS. The application is separated along
different levels of real-time priorities. Tasks are moved by the ARTiS mechanisms of migration and
load-balancing.

two sets. The RT0 tasks are distinguished from all the
lower priority tasks, generalized as RT1+ tasks.

All those tasks are user-space tasks, they just di�er
in their mapping:

• Each RT CPU has one or several RT0 tasks bound
to it. Each of these tasks has the guarantee that
its RT CPU will stay entirely available to it. Only
these tasks are allowed to become non-preemptible
on their corresponding RT CPU. This property
insures a latency as low as possible for all RT0
tasks. The RT0 tasks are the hard real-time tasks
of ARTiS. Execution of more than one RT0 task
on one RT CPU is possible but in this case it is up
to the developer to verify the feasibility of such a
scheduling.

• RT1+ tasks can run on any CPU. However, on a
RT CPU they are only allowed in a preemptible
state. They can use CPU resources e�ciently if
RT0 tasks do not consume all the CPU time. To
keep a low latency for the RT0 tasks, the RT1+
tasks are automatically migrated to an NRT CPU
by the ARTiS scheduler when they are about to
become non-preemptible. The RT1+ tasks are the
soft real-time tasks of ARTiS. They have no �rm
guarantees, but their requirements are taken into
account by a best e�ort policy. They are also the
main support of the intensive processing parts of

the targeted applications.

• The Linux tasks, similarly to RT1+ tasks, can run
on any CPU but, only in a preemptible state on
the RT CPUs. They can coexist with real-time
tasks and are eligible for selection by the sched-
uler as long as the real-time tasks do not require
the CPU. As for the RT1+, the Linux tasks will
automatically migrate away from an RT CPU if
they try to enter into a non-preemptible code sec-
tion on such a CPU.

RT0 tasks are implemented in order to minimize the
jitter due to non-preemptible execution on the same
CPU. RT1+ tasks are soft real-time tasks but they
are able to take advantage of the SMP architecture,
particularly for intensive computing. Linux tasks can
run without intrusion on the RT CPUs. Then they
can use the full resources of the SMP machines. This
architecture is adapted to large applications made of
several components requiring di�erent levels of real-
time guarantees and of CPU power.

2.2 Migration Mechanism

A particular migration mechanism has been de�ned.
It aims at insuring the low latency of the RT0 tasks.
All the RT1+ and Linux tasks running on an RT CPU
are automatically migrated toward an NRT CPU when

they try to disable the preemption. The mechanism
is decomposed into two parts, one which detects the
entrance of a task into a non-preemptible section of
code (that is, a state into which the kernel is not be
able to guarantee the scheduling of another task within
a bounded time). The second part consists in moving
the task from the RT CPU to an NRT CPU. More
details are available in [10].

Migration Triggering Entrance detection was done
by inserting a check to the only two possible ways
that a task disable the preemption, in the functions
preempt_disable() and local_irq_disable(). The
migration triggering is not systematic, several checks
are also done to allow authorized cases to continue.
For instance, it is allowed to disable the preemption if
the task is RT0 or the idle task, or if it is requested by
an interrupt handler. Moreover, one can locally disable
the migration in order to protect a part of the kernel
code, for instance in the schedule() function.

Task Migration Pathway Locks are an easy and
light mechanism to use when several threads might try
to access to the same data at the same time. Unfortu-
nately, this mechanism has no way to support priority
nor preemption. Therefore inter-CPU locks are unsafe
because an NRT processor may block an RT proces-
sor that shares the lock. Consequently, the original
task migration code in Linux was not usable due to
the inter-CPU locks it uses. In ARTiS, the migra-
tion is based on a speci�c intermediate queue, called
RT-FIFO. It is described in detail later. In our imple-
mentation, an RT-FIFO connects every processor to
every other processor.

As it is not possible to migrate a task within its own
context, the migration pathway begins by changing the
context to the next scheduled task. Then the task is
�pushed� into an RT-FIFO to an NRT CPU. By the use
of an inter-processor interrupt, the target CPU will be
noti�ed, it will then read the FIFO and insert the task
into its own run-queue.

Lock Free FIFO The RT-FIFO data structure in-
troduced in ARTiS is characterized by the fact that its
accesses must be lock free. The algorithm proposed
by Valois [13] insures that neither the pushing nor the
pulling on an RT-FIFO is blocked. It is a lock free
and wait free algorithm (wait free because we restrict
the use of the FIFO to only one reader and one writer)
based on a linked chain: one edge is pulled while an-
other is pushed.

The main characteristic of the Valois algorithm is
that the list is never empty: there is always at least a

dummy node. The usage is to allocate dummy nodes
dynamically. In a real-time context, such a dynamic
allocation is not a�ordable (due to inter-CPU locks).
Our solution consists in allocating a new node each
time a task structure is allocated. When a task is
pulled, its node stays as a dummy and the old dummy
node is re-associated to the task structure.

2.3 Load-Balancing Policy

An e�cient load-balancing policy allows the full
power of the SMP machine to be exploited. Usually
a load-balancing mechanism aims at moving the run-
ning tasks across CPUs in order to insure that no CPU
is idle while tasks are waiting to be scheduled. When
trying to impose fairness between the tasks, this is usu-
ally equivalent to maintaining the same load on every
processor. Our case is more complicated because of the
asymmetry introduced by ARTiS and the speci�cities
of the RT tasks. The RT0 tasks will never migrate,
by de�nition. The RT1+ tasks should migrate back
to RT CPUs quicker than Linux tasks: the RT CPUs
o�er latency warranties that the NRT CPUs do not.
To minimize the latency on RT CPUs and to provide
the best performances for the global system, partic-
ular asymmetric load-balancing algorithms have been
de�ned [9].

The current Linux implementation of load-balancing
is simple, compact, modi�able and proven to work well
with most of the usual workloads. Therefore, we have
decided to base the ARTiS load-balancer on this im-
plementation.

Run-queue length weighting The pairing policy
of Linux selects the processor that will receive the tasks
by choosing the most loaded one. The load is esti-
mated using the number of tasks ready to be run. This
estimation works well as long as there are only Linux
tasks being executed, because they share their CPU
time. When there is a high number of real-time tasks
�which is probable in a system based on ARTiS�
this last assumption is not valid anymore. Because
real-time tasks have an absolute priority over the other
tasks, the CPU time is not shared, and a small group
of tasks might take most of the CPU. Therefore, an al-
gorithm adequately measures the load of the RT tasks
was introduced. A CPU load is computed by weighting
the number of tasks in its run-queue by the RT load;
the more CPU time the RT tasks take the higher will
be the load. This improves the fairness between Linux
tasks.

Timeinterru
pt d

eactiv
atio

n

interru
pt d

eactiv
atio

n

interru
pt d

eactiv
atio

n

interru
pt d

eactiv
atio

n

interru
pt d

eactiv
atio

n

Time
NRT CPU

RT CPU

Figure 2. The so-called “ping-pong” problem. A task running on a NRT CPU will be migrated by the
load-balancer to a, less loaded, RT CPU. Due to frequent interrupt deactivation, it soon goes back to
a NRT CPU.

fo
rc
as
te
d

deactiv
atio

n

Timeinterru
pt d

eactiv
atio

n

interru
pt d

eactiv
atio

n

interru
pt d

eactiv
atio

n

interru
pt d

eactiv
atio

n

interru
pt d

eactiv
atio

n

Forbidden migration to RT CPU

Figure 3. Period of forbidden migration (hatched rectangle). The period is deducted from the study
of the previous behavior of the given task.

Inter-CPU locks withdrawal One of the direct
constraints of ARTiS is the avoidance of all the locks
that could be taken at the same time by RT and NRT
processors. The original load-balancer does not need
locks when reading the load of other CPUs but, when
moving tasks from a highly loaded CPU to the current
CPU, it uses inter-CPU locks on the two run-queues in-
volved. Using the RT-FIFO (as described previously)
allows to solve this problem but implies several changes
in the load-balancer. The original version uses a �pull�
policy (under-loaded CPUs initiate the load-balancing
and pull the tasks from another CPU) but the FIFO
model is much more easily implemented within a �push�
policy: a processor can just select a task, put it into
the FIFO and later on, another processor will asyn-
chronously take it.

Next migration attempt estimation A special
mechanism was introduced in order to provide the re-
turn of the RT1+ tasks from an NRT CPU to an RT
CPU in an e�ective way. Typically, an RT1+ applica-
tion might call several consecutive functions that dis-
able preemption. The calls will have to be made on an
NRT processor. If the load-balancer migrates it back to
an RT CPU as soon as a call was �nished it would lead
to a ping-pong e�ect between the two types of proces-
sors, as represented in �gure 2. Not only the execution
would be slowed down for this task but the load-balance

would not be achieved. Therefore, we propose that the
task selection favors tasks which are more likely to stay
a long time on the RT processor. By simple observa-
tions of the calls made by the application it is possible
to obtain the frequency of the calls as well as the time
of the last one. Hence, it is possible to estimate the
next time a migration attempt will be made. As rep-
resented in �gure 3, the load-balancer will not migrate
the tasks for which the risk of a second migration is
high.

Task/processor association The mechanisms
which decide which task should be moved and which
CPU is the target have been modi�ed so they respect
the asymmetry of ARTiS. Concerning the symmetric
load-balancing (NRT to NRT and RT to RT), the
original behavior was �ne. For the load-balancing from
RT to NRT, we modi�ed the functions so that NRT
tasks are moved in priority over RT1+ tasks because
the latter one will have better response time on the
RT CPUs. Obviously, the load-balancing from NRT to
RT has to behave in the opposite way. Additionally, it
will check more frequently for RT1+ tasks to move, so
that their time on RT CPUs can be maximized.

2.4 System and Application Deployment

The ARTiS model is currently implemented as a
modi�cation of the 2.6 Linux kernel. The implemen-
tation has been successfully tested on IA-64 and x86
architectures. It works on SMP hardware and on
multi-threaded processors � allowing computers with
only one, multi-threaded, processor to bene�t from the
ARTiS approach to obtain real-time guarantees.

As the API of ARTiS entirely relies on the Linux
API (which is very close the POSIX one), in general
nearly no modi�cations of the applications is required.
The RT ARTiS tasks are identi�ed as Linux tasks
scheduled with the FIFO scheduling policy (SCHED_
FIFO). An RT0 task must be bound to one and only
one RT CPU. The non POSIX sched_setaffinity()

primitive is used for this. In case the user does not
want, or cannot, recompile an application to �t the
speci�c requirements for ARTiS, it is possible to set
the priority of a task to RT0 using a helper program.

ARTiS is provided as a set of Linux kernel patches.
They apply against the vanilla Linux kernel. A com-
pilation of this kernel and a reboot of the machine are
enough to have a working ARTiS system. Once the
system is running, a setup is necessary to specify the
CPU partitioning, the association between the tasks of
the real-time application and the processors, as well as
the a�nity of interrupts towards processors.

3 Experimental Validation

The ARTiS implementation was validated by several
tests: interrupt latency, execution time jitter and load-
balancing e�ectiveness. Due to size constraints, it is
not possible to describe in details those measurements
but the interested reader can refer to our research re-
port [10]. All the measures were performed on the same
hardware, a 4-way Itanium II machine. The Linux ker-
nel was either version 2.6.11 or 2.6.12 (depending on
the test).

3.1 Latency Measurement

In order to evaluate the interrupt reaction latency,
we did measurements of the elapsed time between the

hardware generation of an interrupt (at a precisely
known time) and the execution of the code concerning
this interrupt. Two kinds of latencies were measured:

• The kernel latency is the elapsed time until the
interrupt handler function is entered. This is the
latency that a driver would have if it was written
as a kernel module.

• The user latency is the elapsed time until the
execution of the associated code in the user-space
real-time task. This is the latency of a real-time
application entirely written in user-space.

For comparison to ARTiS, the standard Linux kernel
with and without the �kernel preemption� was evalu-
ated too. Each test was run for 8 hours long, this
is equivalent to approximately 300 millions measures.
All along the test the system was highly loaded by �ve
types of program corresponding to �ve loading meth-
ods: computing load, input/output load, network load,
kernel locks load, cache miss load.

The table 1 summarizes the measurements. From
the 8 hours of measurement, the highest measured la-
tency is reported. The kernel latencies were mostly not
in�uenced by the con�gurations (about 60µs), which
was expectable as the modi�cations did not modify the
interrupt handler management. On the other hand, it
can be noticed that while the �kernel preemption� op-
tion does improve the user latencies (passing from the
49ms to 1155µs), only the ARTiS con�guration did
avoid maximum latencies over our original real-time
constraint of 300µs (with a maximum of 104µs).

3.2 Execution Time Variation

A second evaluation consisted in studying the sta-
bility of execution duration. From a di�erent point of
view, this assesses the ability of the system to leave the
CPU to a task which is currently running. In a real-
time context, this corresponds to a similar need that
the interrupt latency, bounding the response time.

The experiments involved measuring the execution
time of a routine doing one million integer divisions,
taking approximately 10ms. This routine duration was
selected for being of the same order than the longest

Con�gurations Kernel User
standard Linux 63µs 49ms
Linux with preemption 60µs 1155µs
ARTiS 43µs 104µs

Table 1. Maximum Kernel/User latencies of the different configurations.

computations needed by real-time tasks that can bene-
�t from ARTiS. Measurements were repeated one mil-
lion times. For comparison with ARTiS, the standard
Linux kernel was evaluated too. The task was sched-
uled with the highest available priority (maximum pri-
ority, SCHED_FIFO, equivalent to an RT0 in ARTiS).
The systems were loaded with the same load as in the
previous experiment.

The measurements were also executed without load.
We call Tmin the shortest time that the routine was
measured among this run. It is taken as a reference
for the comparison of the other times, and it is very
likely the minimum time reachable by the routine on
the CPU. Tmin was 9,269µs. With the standard Linux,
the maximum execution time was 20.6µs more than
Tmin, while with ARTiS we measured up to 27.1µs
more. That is respectively 0.22% and 0.29% more time
spent to execute the routine in the worst case.

Those fairly small variations are explained by the
fact that, at this priority, the scheduler never stops
the task for another one. The only slowdowns can
be caused by the interrupt handlers. ARTiS brings
mostly no overhead in this domain. The reason is that
ARTiS modi�es how fast the kernel can handle inter-
rupts but it does not change the scheduler behavior
with respect to the priorities. The overhead is proba-
bly originated by the automatic migration mechanism.
Added to the measured maximum interrupt latency
of 104µs, the 27.1µs variation keeps ARTiS compati-
ble with the maximum latency targeted around 300µs.
Consequently, the system can be considered as a hard
real-time system, insuring real-time applications very
low interrupt response time.

3.3 Load-balancing Observation

The last evaluation that we present concerns the
load-balancing. Although performance benchmark
tools could permit the evaluation a load-balancer, they
have several limitations, mainly they do not permit
broad testing of the di�erent workloads. In addition,
the code complexity of performance tests leads to non-
reproducible results. A dedicated tool, called lbµ and
available on the ARTiS web page [5], was designed to
answer these limits.

A Load-balancer Tester lbµ focuses on running a
set of tasks with as much reproducibility as possible.
A set of task is called a scenario. The tasks of a sce-
nario are fake, they only simulate the behavior of real
tasks, and have very reproducible behavior. The same
scenario can be replayed and compared using di�erent
load-balancers. A scenario is written by de�ning the

properties of each task that will be executed. The �g-
ure 4 shows the de�nition of such a scenario. All the
tasks are started at the same time. One scenario is
not enough to evaluate a load-balancer from every an-
gle, for this, a set of scenarios assessing all the various
aspects of the policies is necessary.

As the result of a run, the user will get information
about the behavior and the mapping of the tasks. Dur-
ing the experiments, the collected information was for
each task: the execution time of the task (wall clock
time), the percentage of time spent on each processor
and the number of times the task was context switched
(meaning scheduled and un-scheduled).

a normal task

{

cpu_mask = 0xffff

loop = 10000000

}

a RT task

{

cpu_mask = 0x2

sched = FIFO

priority = 99

loop = 110000000

sloop = 4000

sleep = 1000000

}

Figure 4. Extract of an lbµ scenario definition

The execution of speci�c scenarios permitted to val-
idate the new or enhanced load-balancing mechanisms
introduced in ARTiS and as described in section 2.3.
For instance, in order to check that the new implemen-
tation improved the estimation the load generated by
the real-time tasks, we used a scenario with 13 Linux
tasks and 3 RT0 tasks. Each of the RT0 tasks con-
sumed about 90% of the processor power. While with
the original load-balancer, the Linux task took between
188s and 438s to complete, the enhanced one lead to
smaller variations, between 377s and 485s. This shows
the improved fairness brought by the modi�cations.

The Next migration attempt estimation and the
Task/processor association mechanisms were also vali-
dated this way. Even with the presence of the �push�
policy necessary to guarantee the real-time constraints,
the balance was as good or better than on a ARTiS ker-
nel without modi�ed load-balancer.

4 Conclusion

In this document, we have proposed a system model
which can provide real-time properties and high per-
formance computing at the same time. The approach
is based on a partitioning of the multi-processor com-
puter between RT processors, where tasks are pro-
tected from jitter on the interrupt response time, and
NRT processors, where all the code that may lead
to a jitter is executed. This partition does not ex-
clude a load-balancing of the tasks on the whole ma-
chine, it only implies that some tasks are automati-
cally migrated when they are about to become non-
preemptible. Additionally, we have proposed speci�c
load-balancing policies which take into account the
asymmetry in order to maintain the maximum usage
of all the available computing power.

An implementation of ARTiS is available, based on
Linux 2.6 and written for IA-64 and x86 architectures.
The API closely follows the POSIX API and it is not
even necessary to recompile Linux applications to ben-
e�t from the real-time properties. The system set up
is done by specifying tasks priority and partitions for
CPUs and interrupts. The validation of the current
implementation of ARTiS was done by observing three
main aspects of the system. A huge improvement of
the interrupt latencies over the standard kernel was
shown, reducing to 104µs the re-scheduling of a real-
time task. The execution time variation of a real-time
priority task is extremely low, as on a standard kernel.
The new load-balancing policies has been proven to be
correct with respect to the theory.

A limitation of the current ARTiS scheduler is the
consideration of multiple RT0 tasks on a given proces-
sor. Even if ARTiS allows multiple RT0 tasks on one
RT processor, it is up to the programmer to guarantee
the schedulability. It would be interesting to add the
de�nition of usual real-time scheduling policies such as
EDF (earliest deadline �rst) or RM (rate monotonic).
This extension requires the de�nition of a task model,
the extension of the basic ARTiS API and the imple-
mentation of the new scheduling policies. The ARTiS
API would be extended to associate properties such
as periodicity and capacity to each RT0 task. A hi-
erarchical scheduler organization would be introduced:
the current highest priority task being replaced by a
scheduler that would manage the RT0 tasks.

References

[1] G. E. Allen and B. L. Evans. Real-time sonar beam-
forming on workstations using process networks and

POSIX threads. IEEE Transactions on Signal Pro-

cessing, pages 921�926, Mar. 2000.
[2] B. Bennet. From dual-core to many-core, is the in-

dustry ready? In PPAM 2005, Sixth international

conference on parallel processing and applied mathe-

matics, Poznan, Poland, Sept. 2005.
[3] S. Brosky and S. Rotolo. Shielded processors: Guar-

anteeing sub-millisecond response in standard Linux.
In Workshop on Parallel and Distributed Real-Time

Systems, WPDRTS'03, Nice, France, Apr. 2003.
[4] P. Cloutier, P. Montegazza, S. Papacharalambous,

I. Soanes, S. Hughes, and K. Yaghmour. DIAPM-
RTAI position paper. In Second Real Time Linux

Workshop, Orlando, FL, Nov. 2000.
[5] Laboratoire d'informatique fondamentale de Lille,

Université des sciences et technologies de Lille. ARTiS
home page. http://www.lifl.fr/west/artis/.

[6] P. E. McKenney. Attempted summary of �RT patch
acceptance� thread. Linux Kernel Mailing List, July
2005. http://lkml.org/lkml/2005/7/11/118.

[7] K. Morgan. Preemptible Linux: A reality check.
White paper, MontaVista Software, Inc., 2001.

[8] OAR Corporation. RTEMS home page. http://www.
rtems.com/.

[9] E. Piel, P. Marquet, J. Soula, and J.-L. Dekeyser.
Load-balancing for a real-time system based on asym-
metric multi-processing. In 16th Euromicro Confer-

ence on Real-Time Systems, WIP session, Catania,
Italy, June 2004.

[10] E. Piel, P. Marquet, J. Soula, C. Osuna, and J.-L.
Dekeyser. ARTiS, an asymmetric real-time scheduler
for Linux on multi-processor architectures. Research
Report RR-5781, INRIA, France, Dec. 2005.

[11] J. A. Stankovic and R. Rajkumar. Real-time operating
systems. Real-Time Systems, 28(2-3):237�253, Nov.
2004.

[12] T. Straumann. Open source real-time operating sys-
tems overview. In 8th International Conference on

Accelerator and Large Experimental Physics Control

Systems, San Jose, California, USA, Nov. 2001.
[13] J. D. Valois. Implementing lock-free queues. In Pro-

ceedings of the Seventh International Conference on

Parallel and Distributed Computing Systems, Las Ve-
gas, NV, Oct. 1994.

[14] V. Yodaiken. The RTLinux manifesto. In Proc. of the

5th Linux Expo, Raleigh, NC, Mar. 1999.

