
Spectrum-based Health Monitoring
for Self-Adaptive Systems

Éric Piel, Alberto Gonzalez-Sanchez, Hans-Gerhard Gross and Arjan J.C. van Gemund
Department of Software Technology

Delft University of Technology
The Netherlands

{e.a.b.piel, a.gonzalezsanchez, h.g.gross, a.j.c.vangemund}@tudelft.nl

Abstract—An essential requirement for the operation of self-
adaptive systems is information about their internal health state,
i.e., the extent to which the constituent software and hardware
components are still operating reliably. Accurate health informa-
tion enables systems to recover automatically from (intermittent)
failures in their components through selective restarting, or self-
reconfiguration.

This paper explores and assesses the utility of Spectrum-based
Fault Localisation (SFL) combined with automatic health moni-
toring for self-adaptive systems. Their applicability is evaluated
through simulation of online diagnosis scenarios, and through
implementation in an adaptive surveillance system inspired by
our industrial partner. The results of the studies performed
confirm that the combination of SFL with online monitoring can
successfully provide health information and locate problematic
components, so that adequate self-* techniques can be deployed.

I. INTRODUCTION

It is generally accepted that all but the most trivial systems
will inevitably contain residual defects. Adaptive and self-
managing systems acknowledge this fact through deployment
of fault tolerance mechanisms that are able to react adequately
to problems observed during operation time. A fundamental
quality of such a system is, therefore, its ability to constantly
maintain internal health information of its constituent parts,
and isolate the root cause of a failure in case the system
health decreases. Once the fault is isolated, and the problem-
atic component(s) identified, the system can unleash its full
range of inbuilt self-protection, -adaptation, -reconfiguration,
-optimization, and -recovering strategies to resume its normal
operation.

A system that is able to reason about its own health and
pinpoint problematic components requires built-in monitoring
techniques, which enable the observation of deviations from
its nominal behaviour, and built-in fault localisation strategies,
that permit the system to convict or exonerate a potentially
faulty component. Although, up to now, SFL has only been
applied offline, it can be used online, i.e., in combination with
specifically designed monitoring approaches. To the best of
our knowledge, SFL is the most light-weight fault localization
technique available to be used for the provision of health
information and for identifying problematic components in
adaptive systems.

In this paper, we make the following four contributions.
(1) We demonstrate how SFL can be applied to online fault

diagnosis. (2) We present two specific observation approaches

that support efficient and effective online diagnosis through
time-/transactional separation. (3) We develop and assess a
simple but effective sliding window technique that helps to
keep the diagnosis in sync with the currently observed health
state of the system. (4) We assess our proposed techniques in
simulations as well as in a real industrial case study.

Section II outlines SFL and the monitoring approach on
which it relies for performing online diagnosis. Section III
describes how we performed the simulations for evaluation.
Section IV depicts the observation and windowing techniques
used for the continuous health information. Section V presents
the case study. Section VI discusses related work, and sec-
tion VII summarizes and concludes the article.

II. FAULT DIAGNOSIS

The objective of fault diagnosis is to pinpoint the precise
locations of faults in a system by observing the system’s
behaviour. Before delving into the usage of the SFL ap-
proach for online fault localisation, and the provision of
health information, let us introduce SFL in its offline version.
Typical active testing cannot be applied online, because of
interference, so that continuous validation must come from
observations provided by monitors. This may also be referred
to as passive testing. The following inputs are usually involved
in SFL approaches:

• A finite set C = {c1, c2, . . . , cj , . . . , cM} of M “compo-
nents” (e.g., source code statements, functions, classes)
which are potentially faulty. We will denote the number
of faults in the system as Mf .

• A finite set T = {t1, t2, . . . , ti, . . . , tN} of N tests
(observations in the online version) with binary outcomes
O = (o1, o2, . . . , oi, . . . , oN), where oi = 1 if test ti
failed, and oi = 0 otherwise.

• A N × M activity matrix, A = [aij], where aij = 1 if
test ti involves (covers) component cj , and 0 otherwise.
Each row ai of the matrix is called a spectrum. Due to the
continuous nature of the target systems in online health
monitoring, an important consideration is how to manage
the coverage matrix A, which is discussed in Sect. IV.

The output of fault localisation, is a diagnosis, which is a
ranking of the components ordered according to their assumed

health state within the system. This ranking is an indicator for
the likelihood of the components containing the fault(s).

In program debugging, the granularity of a component is
often very small, typically at the statement level, since SFL
benefits from variations in program control flow. However,
in an online context, we selected a larger grain size as
components, i.e., source code function (or source code pro-
cedure). This still permits to monitor a system and to take the
appropriate actions in case of degradation, while it reduces
the performance overhead, and represents a more realistic
component granularity for large systems1.

An important property of any diagnosis approach is its
diagnostic performance, representing how well the diagnosis
algorithm can pinpoint the true root cause of an observed
problem. In SFL, this is expressed in terms of a metric Cd that
measures the theoretical effort still needed for a diagnostician
to find all faulty components after reading the generated
diagnosis [5]. In an autonomic context this metric describes
the (un)certainty of a diagnosis when making decisions such as
aborting a mission, changing a component, etc. Cd measures
wasted effort, independent of the number of faults Mf in the
system, to enable an unbiased evaluation of the effect of Mf

on Cd. Thus, regardless of Mf , Cd = 0 represents an ideal
diagnosis technique (all Mf faulty components are ranked at
the top, and no effort is wasted for a human to check healthy
components), while Cd = M − Mf represents the worst
diagnosis technique (checking all M−Mf healthy components
before the Mf faulty ones). For example, consider a diagnosis
algorithm that returned the ranking 〈c12, c5, c6, . . .〉, while c6
contains the actual fault. This diagnosis leads the developer to
inspecting c12 and c5 first. As both components are healthy,
Cd is increased by 2, and the next component to be inspected
is c6. As it is faulty, no more effort is wasted and Cd = 2. To
ease comparison between systems, a relative wasted effort is
often used: Cd

M−Mf
.

A. Statistical Fault Diagnosis

Statistical SFL is a well-known approach originating in
software engineering [4], [15]. Here, fault likelihood lj (and
thus assumed health) is quantified in terms of similarity

coefficients (SC). SC measure the statistical similarity between
component cj’s test coverage (a1j , . . . , aNj) and the observed
test outcomes, (o1, . . . , oN). It is computed by four values
npq(j) counting the number of times aij and oi form the
combinations (0, 0), . . . , (1, 1), respectively, i.e.,

npq(j) = |{i : aij = p ∧ oi = q}| p, q ∈ {0, 1} (1)

For instance, n10(j) and n11(j) are the number of tests in
which component cj is executed, and which passed or failed,
respectively. The four counters sum up to the number of tests
N . Two commonly known SCs are the Tarantula [15], and

1In reality the granularity would reflect the level at which components can
be plugged in and out the system dynamically.

Ochiai [4] similarity coefficients, given by

Tarantula: lj =

n11(j)
n11(j)+n01(j)

n11(j)
n11(j)+n01(j)

+
n10(j)

n10(j)+n00(j)

(2)

Ochiai: lj =
n11(j)√

(n11(j)+n01(j))·(n11(j)+n10(j))
(3)

Ordering the components by their lj , results in the ranking of
the diagnosis algorithm.

Despite their lower diagnostic accuracy [5], SC are ideal
for online diagnosis due to their ultra-low computational
complexity (compared with probabilistic diagnosis approaches
based on Bayesian reasoning). Another advantage is the fact
that SC are incremental, so there is no need to compile
a (possibly huge) test coverage matrix. Only the counters
npq must be kept per component. Finally, unlike Bayesian
approaches, statistical SFL is robust w.r.t. uncertainties in the
test outcomes. While all techniques tolerate false negatives
(i.e., a test involving a faulty component and not returning
a failure), statistical approaches are more robust w.r.t. false
positives, which is essential in online monitoring as the oracles
are often less sophisticated than in offline testing.

B. Monitoring

The main difference of this work compared to previous
application of SFL is the use of online monitoring instead
of offline testing for the provision of observations and hence
health information. A monitor is a specific component in
the system that observes and assesses the correctness of the
business logic without interfering through active test inputs.
Monitors are executed along with the business logic, merely
adding performance overhead. Monitoring is well understood,
easy to apply, and event-based, due to its passive nature, e.g.,
triggered by the arrival of a new data, or a timer interrupt.
A monitor observes data or behaviour in specific predefined
locations and decides based on built-in oracle logic whether
an observation is expected (pass) or unexpected (fail), for
example through checking invariants, or through comparison
with a state model.

III. ONLINE SFL SIMULATION

For initial illustration and evaluation of online SFL we use
synthetic system simulations next to an actual case study.
Simulations can be executed quickly (e.g., for our case study
system we can simulate one hour of operation in just a
few seconds). They avoid implementation details which could
cause noise in the observations (e.g., monitors with false
positives), and they allow to vary many properties of a base
system, in order to generalise the findings according to many
different (synthetic) system configurations. The simulations
use models of the system under consideration in terms of
different topologies of the surveillance system used as case
study. The different system topologies generate outputs similar
to the ones used by the actual SFL diagnosis algorithm, i.e., a
ranking of the components according to their assumed health

for a complete period of execution of the simulation. Simulator
and example models are available for download2.

A. System Modeling for Simulation

We use two layers of representation for simulation: a
topological layer and an execution layer. The topological
layer models the system in terms of the relation between
each business logic component, the location of the monitors,
and the location of the faults. Each component has a health
variable 0≤h≤1 indicating its likelihood to generate the output
expected from the specification. By default the value is 1,
meaning it is healthy. A fault in a component is simply inserted
by setting h to a low value, representing the likelihood the fault
does not cause a failure when the component is executed. The
topology is represented by a Component Interaction Graph
(CIG) [28] with components as vertices and calls as edges.
Monitors are like normal components in the system.

Figure 1 shows an example CIG, with 7 business logic
components and 3 monitors (A, B, and C). Component 2 is set
to be faulty, with h = 0.4 (h = 1 for the other components).
This CIG can be read as control-flow graph. The model
represents a data-flow system where component 1 receives the
inputs and passes them on to the other components.

Fig. 1. Example topological layer with 7 business logic components and 3
monitors.

The behaviour in the topology is defined by the execution
layer. It contains a set of execution paths, each comprising a
list of components in the order they are executed. A path must
be consistent with the topology of the system: components
may be executed in a sequence if the topological model defines
this through edges. Fig. 2 shows an example with three paths
through the model (from Fig. 1).

A goodness attribute g is added to every monitor. This
attribute represents the likelihood that a monitor’s outcome
is pass and the monitored sub-path is not leading to failure,
even if there was a fault. This is based on the Propagation,

Infection, Execution notion by Voas [24], representing the
fact that a failure in a component can still lead to a correct
output in the subsequent component. It makes the simulations
more realistic (and more difficult for the SFL algorithm by
introducing more false negatives). g should be set to h<g<1
for the lowest h in the considered path. The same monitor
can have different values of g in different execution paths.
Finally, a frequency is associated with each execution path,
representing how often this path is taken during the execution
of the system (Fig. 2).

2http://swerl.tudelft.nl/bin/view/Main/SOFL

1→2→3→Bg=0.9→3→6→3→7 f = 0.2Hz

1→4→Ag=1→4→5→Cg=1→5→3→Bg=1 f = 1.2Hz

1→2→3→Bg=0.6→3→7 f = 3Hz

Fig. 2. Example of the execution layer of a model of a system with 3
execution paths.

All 3 paths (Fig. 2) start with component 1 as entry point
to the system. The second path never covers the faulty com-
ponent, i.e., all monitors along this path have g = 1, always
reporting a pass (2). The third path is executed on average 15
times more often than the first one. In addition, false positive
and false negative monitor outcomes can be simulated with this
setup, with h < 1 (indicating the probability that the outcome
is inverted).

B. Simulated Behaviour

The simulation of a path consists in traversing all com-
ponents of the path, marking them as covered (adding the
component to the spectrum, see Section IV-A). If a monitor
is activated, current time, coverage (spectrum), and outcome
are logged. The outcome is randomly generated from the g

likelihood associated with the monitor. The simulation ends
after a preset period of time, and the monitor logs are provided
as simulation output.

Figure 3 shows example logs generated from a simulation
of the system shown in Figure 2 over a period of one second.
Each line corresponds to the log of one monitor triggered in the
execution path: a spectrum and an outcome (simulation started
at time 0). The monitor logs are passed to the fault localisation
algorithm for computing the estimated fault location (i.e., the
assumed health of the components). Comparing the output of
the fault localisation with the actual position of the fault in
the model yields the diagnostic performance Cd (described in
Section II).

Time 1 2 3 4 5 6 7 Outcome
0.0 1 1 1 Fail
0.0 1 1 Pass
0.0 1 1 1 Pass
0.0 1 1 1 1 Pass
0.0 1 1 1 Pass
0.33 1 1 1 Fail
0.66 1 1 1 Pass
0.83 1 1 Pass
0.83 1 1 1 Pass
0.83 1 1 1 1 Pass
1.0 1 1 1 Fail

Fig. 3. Example of spectra and monitor outcomes generated from a simulation
of 1 second.

C. Generation of System Configurations

As basis for creating many simulations, we used the
topology of the surveillance system from the case study
in Section V. It comprises 63 components for the business
logic, scoped into six main modules (Fig. 10). For each of
the 63 components, a configuration was generated with that
component being the faulty one with a h = 0.1 (where

specified, a set was also created with h = 0.9). For each fault
location, 10 different system configurations were generated
by randomly placing 15 monitors, and producing a set of
20 execution paths (with random frequencies between 0.2 Hz
and 50 Hz). Therefore, in the following section, each result
presented corresponds to the average result of 630 system
configurations.

IV. CONTINUOUS FAULT LOCALISATION

Applying SFL online brings up two issues: (1) the range of a
spectrum (discussed in Subsect. IV-A), and (2) the adequacy of
the diagnosis with the current system behaviour (discussed in
Subsect. IV-B). In the offline version tests are independent, so
that start and end of an interaction and its component coverage
are clear, as well as associated inputs and outputs. However, in
the case of continuous diagnosis these boundaries disappear,
or, at least, become blurred. In this section, we present the
challenges in adapting SFL to be used in an online context,
and propose solutions to overcome them.

A. Spectrum sampling

In many cases, interactions in a live system are not clearly
separable by time or space boundaries (such as a complete test
transaction in testing). Input stimuli are continuously arriving
and the system responds accordingly changing its internal
state and/or producing some output. For example, in our
case study, input messages arrive at any time, and sometimes
simultaneously in separate threads. Previous inputs influence
the behaviour of a component either explicitly such as in a
database, or implicitly by affecting its internal state. Every
time a system monitor is covered in an execution path, it
generates a new spectrum, i.e., coverage of components as
row in the coverage matrix A, and its outcome (pass/fail)
is added to the vector O. Component coverage is recorded
since the system was started, and after a short period of
operation, the coverage matrix will contain only 1’s: “every-
thing covered”. Although this approach would guarantee a
strong causal relationship between fault execution and failure
observation (i.e., if a failure is observed, the spectrum will
contain the fault information), a solid 1’s spectrum does not
provide any diagnostic information for the SFL, because it
infers the diagnosis from differences of the various spectra in
the coverage matrix A and the outcome O.

The curves termed time inf of Figures 4 and 5 show the
effect of the spectrum observation as used for assessing the
diagnostic cost throughout the execution of the system. The
cost is almost constant for the entire time at 0.5, meaning
the correct fault location is on average in the middle of the
provided ranking. Guessing the fault locations randomly would
yield a similar performance.

The coverage of components represented as binary values
in the spectrum must be reset regularly, in order to provide
a meaningful diagnosis. In the following we discuss some
possible alternatives for resetting or limiting the spectrum in
terms of time and space, in order to impose some artificial
transaction boundaries on the system execution.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300 350

R
e

la
ti
v
e

 d
ia

g
n

o
s
ti
c
 c

o
s
t

C
d
/(

M
 -

 M
f)

Time (sec)

time inf
time 1s

time 10s
time rnd 1s

time rnd 100s
per mon

transaction

Fig. 4. Average diagnostic cost along the time of observation for various
observation policies, with one fault expressed as h = 0.1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300 350

R
e

la
ti
v
e

 d
ia

g
n

o
s
ti
c
 c

o
s
t

C
d
/(

M
 -

 M
f)

Time (sec)

time inf
time 1s

time 10s
time rnd 1s

time rnd 100s
per mon

transaction

Fig. 5. Average diagnostic cost along the time of observation for various
observation policies, with one fault expressed as h = 0.9.

1) Data-oriented Spectra: The original idea of SFL and
offline-testing is that each outcome of a test is associated with
a list of covered components. A fail outcome means that the
list of covered components are more suspect to contain the
fault, and a pass outcome means that the covered components
are less likely suspects.

The data-oriented spectra technique associates with each
data object in the system additional meta-data that contains
information about which components were involved in the
processing of that data object. This approach guarantees en-
forcement of the causal relationship between fault involvement
and failure, albeit to the cost of a large storage overhead. A
clear disadvantage is the necessity of modifying the system im-
plementation for performing the spectra updates whenever data
is created or modified (including all internal state information).

Moreover, for each spectrum update location, an analysis must
be performed in order to determine the origin of every new
data item. It would be possible to automate the analysis as it
is a problem related to definition-use data dependencies [11].
However, it goes directly against the philosophy of applying
SFL, which is to avoid white box knowledge of a component
altogether.

Despite being the most advanced approach, given the com-
plexity of analysis required and the technology limitation,
we only implemented it on a part of the case study system
presented in Section V. In order to overcome these major
practical difficulties, we investigate other techniques that are
easier to realise.

2) Separate-per-Monitor: A monitor validates the correct-
ness of a specific component transaction in the system, corre-
sponding to particular interactive functionality. The provision
of an outcome through the monitor correlates to the end of this
transaction. The beginning of the next transaction observed by
the monitor, therefore, can be approximated to the time just
after the outcome is generated. This policy assigns a separate
spectrum to every monitor. Each time a component is involved
in the execution of a transaction, the current spectrum of every
monitor is updated. When a monitor generates an outcome, its
associated spectrum is used as a row for the matrix A and is
then completely reset to zero.

Figures 4 and 5 show, based on simulation, the effectiveness
of this policy (graphs termed per mon). Although, it does
provide some improvements over a spectrum which is never
reset (the diagnostic cost converges towards 0.35 instead of
0.5), we will see that other policies can provide a lower
diagnostic cost.

Separate-per-monitor has two drawbacks: (1) Loose rela-
tionship between fault and failure. For example, due to internal
state, one execution of a faulty component could cause a
failure multiple times, but only the detection of the first
failure will produce a spectrum that encompasses the faulty
location. (2) An execution that happens after the observation
is considered part of the next observation, i.e., components
that are triggered by the interaction’s output are also in the
spectrum, breaking the causality expectation, which lowers the
diagnostic information that could be extracted by SFL.

The next policy strives to solve this second drawback.
3) Transactional: This policy is based on the separate-per-

monitor policy but uses additional information to further limit
the scope of the spectrum of each monitor to the components
involved in the monitored interaction3. Only the bits of the
components that are explicitly part of the interaction are
considered. The list of the components in the interaction linked
to each monitor is provided before the execution of the system
(and updated after each modification). It is either manually
created by the user (the developer of the monitor, most likely),
or it could be determined by code or configuration analysis.

Figures 4 and 5 depict this policy labelled transaction. It
is the most effective policy with diagnostic cost converging

3Each execution of the interaction can be considered a transaction, hence
the name of the policy.

towards 0.31. However, if a fault modifies how components
interact (i.e., the control flow is modified), the difference
between the model and the implementation could lead this
policy to omit the faulty component from every spectrum
associated with a fail outcome. In this special case, the quality
of the diagnosis would be adversely affected. In order to
avoid relying on pre-analysis of the system we investigate a
technique requiring less information about the system.

4) Time Frame: The time frame policy uses expiration of
time as transaction boundary to establish causality between
components covered and monitor outcome. Over a given
time period, the component activity is recorded into a global
“current spectrum". When the time expires, the bits of the
involved components are reset and the recording of a new
current spectrum is started. Every monitor outcome during this
period, is associated with the current spectrum.

Time frame-based sampling avoids spectra with too many
1’s if the time window is properly adjusted to the working
speed of the system. However, it does not enforce strong fault-
failure relationship. If an error stays dormant during one time
frame, and only manifests as failure in a subsequent one, the
faulty component may not be in the spectrum, and, hence, the
fault-failure relation is not established. This can be mitigated
by using larger time frames, although then, we run the risk of
producing spectra with too many covered components, thus,
loosing diagnostic information.

Figures 4 and 5 show the effect of this policy with time
frame periods of 1 and 10 s. All periods converge to the same
diagnostic cost, with the shorter ones converging faster4.

The trade-off between frame length and diagnostic infor-
mation must be considered. A sensible approach is to use
a random frame length. After expiration of time frame, the
length of the next frame is determined randomly within rea-
sonable bounds. In our experiment an exponential distribution
(with a mean of 1 s) is used in order to compensate for
long time frames that would take much more total time in
a uniform distribution. Figure 5 illustrates that this technique
yields as good results as the best fixed time frame method, and
almost as good results as the transactional method, which both
require additional knowledge about the system. Simulations
with different average periods (0.1 to 100 s) provide almost
identical diagnostic costs. While the average period must still
be selected according to the system under observation, it can
be relatively roughly estimated.

Looking at the pro’s and con’s, we recommend that the
observation policy should be selected according to the system
context: if it is possible to gather precise information on which
interaction is observed by a monitor, then the transactional pol-
icy should be applied. Otherwise the randomized time frame
policy should be implemented, with just enough validation to
ensure the average period is adapted to the system.

4The model does not allow to simulate very short periods, which could lead
to resetting the spectrum while an execution path is not finished yet, because
each execution path is simulated as executing instantaneously.

B. Spectrum Matrix Size

In offline-SFL, the size of the spectrum matrix and the
error vector are finite and, in practice, relatively small, which
is not the case online. In our case study, approximately
100,000 monitor outcomes are generated for a single hour of
observation. This could eventually lead to excessive storage
requirements and processing overheads. This potential size
problem is addressed through application of statistical SFL,
on which our approach relies. It is incremental, so that
accumulating counters can be used.

However, another issue is the timeliness of spectrum, for
example “is a week-old observation relevant for the current
state of the system?” A fault may appear long time after the
system was started (e.g., memory leakage, unexpected combi-
nation of inputs that affect the internal state of the system, an
unnoticed third-party component update). Old spectra might
mislead the fault localisation. The detection of a new failure
should always lead to the same diagnosis, independent of how
long the system has been running.

Note however that the problem is not symmetric, when
conversely, a fault is fixed, or the failures are not observed
anymore. If the fault is fixed or worked-around knowingly, it is
easy to reset the matrix at the same time to avoid this “ageing
effect”. If the failures stop appearing without the fault having
been fixed, it is better to still report the component as faulty
for some sufficiently long time to acknowledge the problem
and deal with it.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600

E
s
ti
m

a
te

d
 h

e
a
lt
h

 (

l j)

Time (min)

Begin = 0s
Begin = 32s

Begin = 128s
Begin = 256s

Fig. 6. Estimated health with an infinite window.

Figure 6 shows the health estimated by the SFL algorithm
for a faulty component yielding a failure at different times, and
we keep all spectra. The later the failure surfaces, the slower
is the convergence of health. For a given failure happening
at different times, it is better if the algorithm output stays
identical independent of how long the system has been running
before. The following sub-sections discuss ways to overcome
this problem.

1) Sliding Window: A sliding window policy discards spec-
tra that are older than a given age.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

H
e
a
lt
h

Sliding window 4s

 0.6

 0.7

 0.8

 0.9

 1

 1.1

H
e
a
lt
h

Sliding window 32s

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 50 100 150 200 250 300 350 400 450 500 550 600

H
e
a
lt
h

Time (sec)

Sliding window 128s

Fig. 7. Estimated health for three sliding window lengths (component fails
in the period 128 s – 356 s, dotted lines).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600

R
e
la

ti
v
e
 d

ia
g
n
o
s
ti
c
 c

o
s
t

C

d
/(

M
 -

 M
f)

Time (sec)

Sliding window 2s
Sliding window 4s

Sliding window 32s
Sliding window 128s

Fig. 8. Average diagnostic cost for four sliding window lengths (component
fails in the period 128 s – 356 s, dotted lines).

Figure 7 shows the effect of the sliding window on the
estimated health. It depicts only results with the best observa-
tion policy from the previous section, but similar results with
respect to the window size were observed for every type of
policy. Shorter windows lead the SFL to react faster to the
detection of a failure, reducing the latency to deal with its
corresponding fault. However, short sliding windows result
in noisy and fluctuating system health. In the example, a
window of 4 s is too short and leads to constant fluctuations in
health between 0.6 and 1. The ideal window size (leading to
stable health values) depends on the frequency of the monitors
generating observations and the frequency of failures being
detected.

Figure 8 shows the average diagnostic cost for different
window sizes. Short sliding windows (≤4 s) yield a relatively
high diagnostic cost and noise, because they are too small to
contain enough test outcomes for adequate diagnosis. Longer
windows (of size 32 s and more) provide all a similar good
diagnostic cost, deprived of fluctuations. They solely differ in
the latency to react to the failure disappearance: the longer
the window is, the longer is the latency. The size of the

window after which the diagnosis presents no more noise
depends on the frequency at which the failures are detected. In
the simulations, approximately 60 outcomes per second were
generated, with on average 59 pass and one fail. So an average
of a dozen fail outcomes per window appears to be sufficient
to keep the diagnosis stable.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600
 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

R
e
la

ti
v
e
 d

ia
g
n
o
s
ti
c
 c

o
s
t

C

d
/(

M
 -

 M
f)

D
ia

g
n
o
s
ti
c
 c

o
s
t
v
a
ri
a
n
c
e

Time (sec)

Sliding window
Sliding window variance

Weighted window
Weighted window variance

Biased window
Biased window variance

Fig. 9. Average diagnostic cost for the three types of windowing policy with
a length of 4 s (component fails in the period 128 s – 356 s, dotted lines).

2) Weighted sliding window: In order to react faster to
the appearance or disappearance of faults, a possible tech-
nique is to put more weight on the last observations in
the computation, while still considering historic observations
with smaller weight, in order to avoid the instabilities in the
diagnosis. Instead of directly discarding spectra after their
window expires, old spectrum data is made less and less
relevant by using a weighting window function. Values are
weighted exponentially from the oldest (lowest weight) to the
most recent one (highest weight).

Figure 9 indicates that using a weighted window of length
4 s has no effect compared to a sliding window. The diagnostic
cost is not improved and neither the local variance (computed
over the last 32 points). Although this policy allows to have
a steeper decrease (resp. increase) of the health of the faulty
component when the fault is introduced (resp. removed), the
ranking between each component stays mostly unchanged,
and therefore the average diagnostic is similar to the simpler
policy.

3) Biased sliding window: In cases where failures are very
intermittent, discarding spectra containing fail outcomes can
reduce strongly the quality of the diagnosis because failures
provide more diagnostic information than passed spectra. This
is the reason for the noise in the average diagnostic cost of
small sliding windows.

A biased sliding window policy keeps failing outcomes in
the matrix for a longer period of time than passing outcomes.
In the experiments, we use a period that is 8 times longer
for the fail outcomes than for the pass outcomes. Figure 9
shows the advantage of this technique as the diagnostic cost
is clearly both smaller and more stable. The pass outcomes
were kept for 4 s while the fail outcomes were kept for
32 s. In terms of quality, this provides an equivalent diagnosis

to a sliding window that incorporates all the outcomes for
32 s. However it also has the drawbacks of reacting slower to
disappearing faults that have been dealt with by the system. So,
this policy does not provide any advantages over the simple
sliding window policy with a longer window.

Therefore, we recommend the sliding window policy, which
is easy to implement and is the fastest to execute. The size
of the window should not be too long to ensure a fairly fast
reaction in terms of health. It can be set as the minimum
duration for which one failure occurrence should affect the
diagnosis.

V. CASE STUDY AND EVALUATION

All techniques for realising online fault diagnosis with SFL
have been introduced and developed with the help of synthetic
system configurations and simulation. In the following, we
evaluate our contributions developed in the previous section.

Fig. 10. Architecture of the case study system; monitors are shown as dashed
boxes.

A. Surveillance System

The surveillance system that we use as case receives in-
formation broadcasts from ships, called AIS messages [13],
and it processes them in order to form a situational picture of
the coastal waters. The (simplified) architecture of this system
is displayed in Fig. 10, comprising six main modules. In the
real world, the AS’ modules receive the AIS data from the
antennas physically spread along the coast. In the evaluation,
they read recorded AIS transmissions, for repeatability of the
experiments. The Filter module suppresses duplicate messages
because some antennas cover overlapping areas. The Merger

acts as a temporary database of AIS messages, and clients can
query it for ship tracks (sailing routes). The Plotter is one such
client. It displays all ships with their tracks on the screen of
the command and control centre (by sending vector drawings
to the actual display system). These modules are implemented
as Atlas5 components in Java.

Figure 11 shows an excerpt of the decomposed system,
merely for illustrating its complexity on the level of granularity
used for monitoring and fault diagnosis (not intended to be
read). The system is comprised of 63 components for the core
business logic with an average of 10 lines of Java code each.

5http://swerl.tudelft.nl/bin/view/Main/Atlas

Fig. 11. CIG of the case study on the level of granularity used for monitoring
and diagnosis (63 components).

B. Monitoring and Diagnosis Infrastructure

The monitoring infrastructure of our system comprises four
monitors, each of them guarding different functional and non-
functional aspects of the system.

• AIS data monitor: checks that the AIS data sent by
ships have valid header and arrive with the correct
frequency [13].

• Track manager monitor: the behaviour of the track
manager is modeled as an FSM, and this monitor verifies
that it follows the model.

• Track manager connection monitor: the connection
between the plotter and the track manager is monitored
and error messages are reported as failures.

• Unhandled exceptions monitor: watches every compo-
nent in the system for unhandled Java exceptions. After
the exception is detected the component stops.

Coverage of components is recorded through an ad-hoc Java
aspect. Every component is augmented with this aspect, which
informs a global involvement manager whenever a component
is covered. This special manager maintains the spectra.

When a monitor generates an outcome, it is first transmitted
to the involvement manager to associate the current spectrum,
and then passed to another global module called SFL perform-
ing the online diagnosis described in Section II-A. The output
is a list of all components sorted according to their likelihood
of containing a fault, plus their associated estimated health
(similarity coefficient). The list is updated upon every new
monitor outcome, and provides a means to the adaptive and
self-managing system to react to unforeseen failures.

Because we did not invest extensive effort in the imple-
mentation, the monitors and their logging of the component
coverage lead to a significant performance overhead of approx-
imately 50%. This is mainly attributable to the utilisation of
an aspect-oriented approach and the high update frequency of
the health information, which creates a huge communication
overhead in our example system. However, from earlier work,
such as in [14], we know that we can bring this overhead
down to 5%, mainly by optimizing the spectrum recording
and reducing the update frequency. Another option to address
the monitoring overhead would be to adapt these mechanisms
to work asynchronously, so that they can be partly offloaded
to a different processor.

C. Injected Faults

Our industrial partner is interested in two types of faults,
hardware faults in the transmission system of local stations,
and software faults caused by the business logic.

Hardware faults in the data transmission are simulated
through random packet losses. Software faults are introduced
through mutations in the original code (a set of 100 mutants
was created with µJava [19]). For each of the mutation faults,
the system was executed for one hour with the recorded input,
producing approximately 100,000 monitor outcomes in total.
The output of the SFL component was saved every 10 seconds.
A posteriori, it is then possible to determine the diagnostic cost
at each moment in time. 12 mutations lead to early system
crash (within a minute) and are sorted out (in practice, such
bug would be directly noticed and investigated off-line). 55
mutations have faults not detected by the monitors, leaving 33
configurations with detectable faults.

D. Results

 0

 0.1

 0.2

 0.3

 0 10 20 30 40 50 60
 0

 10

 20

 30

 40

R
e

la
ti
v
e

 d
ia

g
n

o
s
ti
c
 c

o
s
t

C
d
/(

M
 -

 M
f)

R
u

n
n

in
g

 s
y
s
te

m
s

Time (min)

time 0.1ms
time 1ms

time 10ms
time rnd 0.1ms
time rnd 10ms

per mon
transaction
systems

Fig. 12. Average Cd over different periods and for two different observation
policies (33 configurations).

The average Cd for separate per monitor and randomized

time frame observation strategies is presented in Figure 12.
The SFL algorithm uses a sliding window of 5 minutes, in
order to ensure a good quality of the diagnosis while keeping
a relatively fast reaction to any fault correction.

The diagnostic cost Cd, which starts at 0.5, decreases until it
reaches some relatively constant value after around a minute.
This is similar to the results seen in the simulations (Fig. 5).
After 5 minutes of execution (i.e., the length of the sliding
window), all Cd graphs increase. This is because some faults
lead to failures only at initialisation, i.e., they are located in
components only used at that time. When these first spectra
are removed from the matrix (through the sliding window) the
SFL loses information for their location, and assumes a better
health, so Cd increases.

As in the simulation, the separate per monitor observation
performs poorly, with an average Cd converging to 0.19. The

transactional observation performs best, with an average Cd =
0.14. The time frame observation yields its best results with
1 ms (Cd = 0.16). A longer period (10 ms) impairs the results,
and even longer periods of 100 ms are devastating, as well as
very short periods of 0.1 ms, both leading to Cd around 0.3.

Results suggest that observation periods of 1 ms are opti-
mal for this system. The randomized time frame observation
performed equally well as the best fixed time period, for all
periods tried between 0.1 ms and 100 ms.

E. Discussion

This case study demonstrates the feasibility of online fault
localisation using the SFL technique in a real system inspired
by industry. With a diagnostic cost ranging on average below
0.2 just after a minute, it also shows that fault localisation is
able to point into the right direction for identifying problematic
components in adaptive and self-managing systems. Of course,
this works only if residual defects can be detected by the
monitors. Improving the monitoring of a system is outside
the specific scope of this paper. The fact that the results are
relatively similar to the results obtained by simulation suggests
that the model employed for the simulation is representative
for the real case.

Transactional observation provides the best results (in our
case); that is, if for each monitor the information about which
component is observed is known and correct. Otherwise, a ran-
domized time frame allows diagnosis with comparable quality,
if the processing time of a transaction can be approximated
and used as observation period.

The example uses a monitoring and diagnosis architecture
adapted to systems with a relatively fast connection to a central
node. On systems where each component is independent and
communication is limited, such as sensor network, a different
approach might be necessary. For instance, the coverage
spectrum can be sent within the data, instead of using a
separate channel, favouring usage of coverage policies like the
transactional one. As this policy is very efficient, it should be
possible to find similar results on such a system.

It is important to discuss some threats to the validity of our
study. The main threat to external validity is the usage of only
one system for this study. Although the simulations provide a
more generic base, they use one basic topology, coming from
a distinct application domain. However, questions regarding
the performance of SFL w.r.t. system topology and size are
subject of current and future work, independent of the main
intention of this paper, which is to study and further develop
SFL for the online diagnosis context.

A second (internal) threat to the validity of our work to
be addressed in the future is the usage of diagnostic cost as
indicator of SFL performance, and, thus, as sole indicator
for automated fault resolution. Although Cd is used as a
standard in the fault diagnosis literature, it is not clear whether
it provides a direct indicator on how the recovery process
acts with the faulty component ranking, or whether other
factors should be considered. In other words, the quality of

the diagnosis depends on the recovery process or the self-*
process which uses it.

VI. RELATED WORK

The role of fault diagnosis for realising more adaptive,
intelligent, and self-aware systems has been recognized for
at least a decade (e.g., [1], [2], [3], [12]). Some researchers
have looked at online defect detection [6], [20], but did not
address the specific issues of finding the root causes of defects,
i.e., the diagnosis.

Krämer et al. [16] have presented self-monitoring for a
sensor network. As each node is independent from each other,
the fault location is straightforward, and can be derived from
the observations. Moreover, their approach does not fit more
generic systems, apart from sensor networks, and would not
detect misbehaviour on the global level.

Seltzer and Small [22] and Chen [8] have proposed system
infrastructures for enabling self-monitoring and -adaptation.
However, their approaches focus on system performance,
ignoring all the other software quality issues, that our approach
is able to treat. The biggest drawbacks of these approaches is
that they rely on ad-hoc localisation algorithms, which are
based on long observations performed in test systems rather
than in the operational systems, and that they often require
manual adjustments. The usage of automatic diagnosis in our
approach avoids these drawbacks. Our approach can be applied
in a generic way, and relies only on the latest observations.

Related work in diagnosis follows two main streams. There
are (1) spectrum-based approaches such as Pinpoint in the
ROC project [7] (focus on dependable web services), and
(2) model-based approaches such as in model-based program-
ming [25] where diagnosis as well as recovery are based
on logic reasoning in terms of a behavioural model of the
system. Due to their inherently high complexity (run-time
overhead) and the fact that modeling is costly and error-prone,
in particular when systems are dynamically reconfiguring
themselves, model-based approaches are limited to systems
comprising in the order of hundreds/thousands of simple
(hardware) components [10], [26].

Delta Debugging is another related approach [9]. Although
it supports larger systems, it requires to record the state of the
system at every execution step, which would be prohibitive to
perform in an operational system. In [23], an invariant-based
approach is presented and applied online. However, they use
specialised active unit-testing instead of monitoring, and the
state of the system is recorded every time a test is executed,
which leads to a very high overhead (execution time multiplied
by ∼100). An additional issue are interferences that active
testing can cause in a running system.

In contrast to these few examples describing applications in
an online context, most research has focused on design-time
(offline) diagnosis. Spectrum-based approaches are statistical
techniques, e.g., Tarantula [15], Ochiai [4], the Nearest Neigh-
bor technique [21], Sober [18], CBI [17], and CrossTab [27].
They are based on similarity coefficients, and are incremental
in nature, leading to ultra low space and time complexity,

which makes them ideal candidates to be applied online. This
is why our approach uses a statistical technique for diagnosis
and the provision of health information.

VII. CONCLUSIONS & FUTURE WORK

While fault localisation is a fundamental step towards
adaptive and self-managing systems, that is for identifying the
part of the system “which is to blame”, little work so far
has focused on adopting existing diagnosis approaches in this
domain. In this article, we present an approach for realising
online spectrum-based fault localisation to be used in self-
adaptive systems. We introduce techniques to obtain a signif-
icant spectrum for the SFL algorithm in order to yield good
diagnoses. Furthermore, we demonstrate how randomized peri-
odic resetting, in the form of a sliding window, provides high-
quality spectra, without having to use specific information
about the target system. This results in a diagnostic outcome
which is always relevant to the current state of the system.
In addition, we show that the usage of a non-weighted time
window is sufficient for this purpose.

Our contributions are validated first by simulation of a large
set of randomly generated systems, and through a case study
with a system inspired by industry. The diagnostic results on a
set of mutated systems corroborate the results of the simulation
and confirm that, with our contributions, SFL and monitoring
can be applied successfully to online fault diagnosis.

Additional challenges could be investigated in future work
in order to improve the quality of online diagnosis in real
systems. Building an oracle for testing is relatively easy, since
inputs, expected outputs, and the components are known. In
a live system, producing a monitor with the same degree of
accuracy is harder. Imperfections in its design can lead to false
positives, i.e., announce a failure while the system is actually
behaving correctly. The current SFL diagnosis yields poor
results in such cases. This could be improved by enhancing
the similarity coefficient algorithm, and by considering in the
ranking that monitors may also contain faults.

There are monitors, commonly called “watchdogs”, that
detect the disappearance of a component (lost service). They
generate a fail outcome when an observed component is not
responding. If a component is not covered, it is not included in
the spectrum, and cannot be convicted, even though it contains
the fault and is the one to blame. In future work, we will
investigate how watchdogs can be incorporated into online
fault diagnosis.

ACKNOWLEDGEMENT

This work has been carried out as part of the Poseidon
project under the responsibility of the Embedded Systems
Institute (ESI), Eindhoven, The Netherlands. The project is
partially supported by the Dutch Ministry of Economic Affairs
under the BSIK03021 program.

REFERENCES

[1] Berkeley/stanford recovery-oriented computing website.
http://roc.cs.berkeley.edu/.

[2] NASA model-based diagnosis and recovery website.
http://ti.arc.nasa.gov/tech/dash.

[3] XEROX Model-Based Computing project website.
http://www2.parc.com/spl/projects/mbc/.

[4] R. Abreu, P. Zoeteweij, and A. van Gemund. On the accuracy of
spectrum-based fault localization. In Proc. TAIC PART’07, 2007.

[5] R. Abreu, P. Zoeteweij, and A. van Gemund. Spectrum-based multiple
fault localization. In Proc. ASE’09, 2009.

[6] G. K. Baah, E. Gray, and M. J. Harrold. On-line anomaly detection of
deployed software: a statistical machine learning approach. In In Proc.

of the 3rd International Workshop on Software Quality Assurance, pages
70–77. ACM, 2006.

[7] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint:
Problem determination in large, dynamic internet services. In Proceed-

ings of the Conference on Dependable Systems and Networks, pages
595–604, Washington, USA, 2002. IEEE Computer Society.

[8] Z. Chen. Service fault localization using probing technology. In
Proceedings of the Conference on Networking, Sensing and Control,
pages 937–942, Apr. 2006.

[9] H. Cleve and A. Zeller. Locating causes of program failures. In
ICSE ’05: Proceedings of the 27th international conference on Software

engineering, pages 342–351, New York, USA, May 2005. ACM Press.
[10] J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial

Intelligence, 32:97–130, April 1987.
[11] M. J. Harrold and M. L. Soffa. Interprocedual data flow testing. In TAV3:

Proceedings of the third symposium on Software testing, analysis, and
verification, pages 158–167, New York, USA, 1989. ACM.

[12] P. Horn. Autonomic computing: IBM’s perspective on the
state of information technology. Technical report, IBM, 2001.
http://www.research.ibm.com/autonomic/.

[13] International Telecommunication Union. Recommendation ITU-R
M.1371-1, 2001.

[14] T. Janssen, R. Abreu, and A. J. C. van Gemund. ZOLTAR: A toolset for
automatic fault localization. In Proc. ASE’09 - Tool Demonstrations,
2009.

[15] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proc. ICSE’02, 2002.

[16] N. Krämer, A. Monger, L. Petrak, C. Hoene, M. Steinmetz, and
W. Cheng. A collaborative self-monitoring system for highly reliable
wireless sensor networks. In Proc. of the 2nd IFIP Wireless Days
conference, pages 343–348, Piscataway, USA, 2009. IEEE Press.

[17] B. Liblit. Cooperative debugging with five hundred million test cases.
In Proc. ISSTA’08, 2008.

[18] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober: Statistical
model-based bug localization. In Proc. ESEC/FSE-13, 2005.

[19] Y.-S. Ma, J. Offutt, and Y. R. Kwon. Mujava: an automated class
mutation system: Research articles. Software Testing Veriication and
Reliability, 15:97–133, June 2005.

[20] C. Rabejac, J.-P. Blanquart, and J.-P. Queille. Executable assertions and
timed traces for on-line software error detection. In Annual Symposium

on Fault Tolerant Computing, pages 138–147, June 1996.
[21] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor

queries. In Proc. ASE’03, 2003.
[22] M. Seltzer and C. Small. Self-monitoring and self-adapting operating

systems. In Proc. of the Workshop on Hot Topics in Operating Systems,
pages 124–129, Washington, USA, 1997. IEEE Computer Society.

[23] D. Slane. Fault localization in in vivo software testing. Master’s thesis,
Bard College, Massachusetts, USA, 2009.

[24] J. M. Voas. Pie: A dynamic failure-based technique. IEEE TSE,
18(8):717–727, 1992.

[25] B. C. Williams, M. D. Ingham, S. H. Chung, and P. H. Elliott. Model-
based programming of intelligent embedded systems and robotic space
explorers. In In Proceedings of the IEEE: Special Issue on Modeling

and Design of Embedded Software, pages 212–237, 2003.
[26] B. C. Williams and R. J. Ragno. Conflict-directed a* and its role in

model-based embedded systems. Discrete Appl. Math., 155:1562–1595,
June 2007.

[27] W. Wong, T. Wei, Y. Qi, and L. Zhao. A crosstab-based statistical
method for effective fault localization. In Proc. ICST’08, 2008.

[28] Y. Wu, D. Pan, and M.-H. Chen. Techniques for testing component-
based software. In Proceedings of the IEEE International Conference

on Engineering of Complex Computer Systems, pages 222–232, Los
Alamitos, USA, 2001. IEEE Computer Society.

