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Abstract

We propose the ARTiS system, a real-time extension of GNU/Linux dedicated to SMP (Sym-
metric Multi-Processors) systems. ARTiS exploits the SMP architecture to guarantee the pos-
sible preemption of a processor when the system has to schedule a real-time task. The basic
idea of ARTiS is to assign a selected set of processors to real-time operations. A migration
mechanism of non-preemptible tasks insures a latency level on these real-time processors. Fur-
thermore, specific load-balancing strategies allows ARTiS to benefit of the full power of the
SMP systems: The real-time reservation, while guaranteed, is not exclusive and does not imply
a waste of resources.

Simulations of the ARTiS performances have been conducted. The level of observed latency
comfort the model proposition. A first implementation of ARTiS, while incomplete, also shows
significant improvements compared to the standard Linux kernel.

1 Linux, SMP and Real-Time
Nowadays, there is a need for real-time guaranties in general purpose operating systems. “Soft
real-time” application democratization is the trend: Everyone wants to play a video while burn-
ing a CD. Operating systems such as Linux take this request into account and consider some
latency issues in place of the sole fairness of the traditional Unix.

Nevertheless, several application domains require hard real-time support of the operating
system: The application contains tasks that expect to communicate with dedicated hardware in a
time constrained protocol, for example to insure real-time acquisition.

Those same real-time applications require large amount of computational power: For example
in the spectrum radio surveillance applications used to analyze the waveform signatures, the
communications and the coverage have an increasing need of power with the apparition of the
UMTS (greater bandwidth and more complex algorithms).

∗This work is partially supported by the ITEA project 01010, HYADES
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The usage of SMP (Symmetric Multi-Processors) to face this computational power need is a
well known and effective solution. It has already been experimented in the real-time context [1,
2].

The real-time operating systems market is full of proprietary solutions. Despite the definition
of standard POSIX interface for real-time applications [10], each vendor comes with a dedicated
API. The lack of a major actor in the real-time community results in a segmented market and we
are persuaded that the definition of an Open Source real-time operating system may encounter a
success.

Our expectation is then to find an Open Source full operating system for real-time on SMP
platforms:

• An Open Source system to gain conformance with a standard,
• A “full” operating system to allow the cohabitation of real-time and general purpose tasks

in the system,
• Running on SMP platforms to face the intensive computing aspects of the applications.

Four main categories of operating systems are able to compete for the system we are looking
for:

• Dedicated real-time operating systems (such as VxWorks),
• GNU/Linux, and especially the new Linux with its so-called “preemptible” kernel,
• Existing real-time extensions for the Linux kernel,
• Operating systems based on the Asymmetric Multi-Processing approach.

Dedicated real-time operating systems are readily available and extensively tested systems
that deliver excellent hard real-time performances. Nevertheless, these systems mostly target em-
bedded applications and the fact, for example, that a system such as VxWorks does not provide
a full memory protection [6] makes it poorly suited for large applications (despite the announce
of a new memory protection scheme in the upcoming VxWorks 6.0). Furthermore, these systems
claim to support SMP architectures but consider them as a “multi mono-processor architecture”.
One instance of the operating system is running on each processor, the application tasks must
use synchronization or communication primitives based on a message-passing interface. This
approach complicates the programming and deprives the SMP architecture of one of its most
interesting features, the scalability.

The standard GNU/Linux system is an Open Source operating system, its availability on
SMP platforms is now mature [5] and the system has excellent non real-time performances. Nev-
ertheless, the architecture of the Linux kernel is by construction unable to guarantee any latency,
neither at the interrupt level, nor at the user level: The Linux kernel is not preemptible and some
of the works associated to the latency are deferred to the end of the ongoing system call.

Many attempts to improve the Linux kernel latencies have been proposed. The embedded
Linux vendor MontaVista has introduced a rather simple and systematic patch of the Linux ker-
nel [14] to ensure some preemption points in the kernel, and doing so, to reduce the kernel la-
tency. This patch, maintained by Robert Love, has been adopted recently by the mainstream
Linux kernel [15], mainly because it also implies a reduction of the latency targeted by multime-
dia applications.

Another, and complementary, approach is the so-called “low-latency” patch [20] of Ingo Mol-
nar and Andrew Morton which adds some fixed preemption points into the kernel. If it reduces
the kernel latency, the maintaining of this patch against the constant evolution of the kernel is an
heavy job and the worst case latency evolution with the kernel “improvements” is still an affair
of kernel experts.

Bernard Khun recently proposed a real-time interrupt patch [11] that introduces a notion of
interrupt priority, allowing to reduce the worst case latency of the Linux kernel. Still, the exten-
sion of this mechanism to SMP systems is not obvious: A high priority interrupt execution may
be delayed because it shares a lock with a low priority interrupt execution on an other CPU.

A well known solution that claims to add real-time capabilities to the Linux kernel is the
so-called co-kernel approach. These Linux extensions consist in a small real-time kernel that
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provides the real-time services and that runs the standard Linux kernel as a low priority task
when no real-time task is eligible. The interrupts are rerouted to the Linux kernel by the real-
time kernel; this virtualization of the Linux kernel interrupts allows the co-kernel to preempt the
Linux kernel when needed. RTLinux [9, 21] and RTAI [7] are two famous systems based on this
principle.

If the recent versions of RTLinux also target SMP systems [22], RTLinux comes with its “Open
RTLinux Patent License” or with a commercial license and uses a FSM Labs patent that may
prevent its usage and adoption, despite its current success.

This co-kernel approach suffers from providing a dualistic platform to the developer: Real-
time processes do not benefit from the services of the Linux kernel, and Linux processes do
not benefit from real-time enhancements. This is a major drawback, even if RTLinux supports
communications between the real-time processes and the Linux processes through real-time FI-
FOs [8], or if RTAI provides an unique API to the developer through a kernel module, called
LXRT, which exports real-time services to the Linux processes.

Another approach that exploits the SMP architecture relies on the shielded processors or
asymmetric multiprocessing principle. On a multiprocessor machine, the processors are spe-
cialized to real-time or not: Real-time processors will execute real-time tasks while non-real-
time processors will execute non-real-time tasks. Concurrent Computer Corporation RedHawk
Linux variant [4, 3] and SGI REACT/pro, a real-time add-on for IRIX [18] follow this principle.
However, since only real-time tasks are allowed to run on shielded CPUs, if those tasks are not
consuming all the available power then there are some CPU resources which are wasted. In pre-
vious works, we had evaluated the effectiveness of this approach [13]. Our proposition of ARTiS
enhances this basic concept of asymmetric real-time processing by allowing resource sharing be-
tween the real-time and non-real-time tasks.

2 ARTiS: Asymmetric Real-Time Scheduler
Our proposition is a contribution to the definition of a real-time Linux extension that targets
SMPs. Furthermore, the programming model we promote is based on a user-space program-
ming of the real-time tasks: The programmer uses the usual POSIX and/or Linux API to define
his applications. These tasks are real-time in the sense that they are identified with a high pri-
ority and are not perturbed by any non real-time activities. For these tasks, we are targeting a
maximum response time below 300µs.

To take advantage of SMP architecture, an operating system needs to take into account the
shared memory facility, the migration and load-balancing between processors, and the communi-
cation patterns between tasks. The complexity of such an operating system makes it looking more
like a general purpose operating system than a proprietary real-time operating system (RTOS). A
RTOS on SMP machines must implement all these mechanisms and consider how they interfere
with the hard real-time constraints. This may explain why RTOS’s are almost mono-processor
dedicated. On the other hand, the Linux kernel is able to efficiently manage SMP platforms, but
everybody agrees that the Linux kernel has not been designed as a RTOS. Technically, only soft
real-time tasks are supported, via the two scheduling policies: FIFO and round-robin.

The ARTiS solution keeps both interests by establishing from the SMP platform an
Asymmetric Real-Time Scheduler in Linux. We want to keep the full Linux facilities for each
process and the SMP Linux properties but we want to improve the real-time behavior too. The
core of the ARTiS solution is based on a strong distinction between real-time and non-real-time
processors and also on migrating tasks which attempt to disable the preemption on a real-time
processor. To provide this system we propose:

• The partition of the processors in two sets. A NRT CPU set (Non-Real-Time) and a RT
CPU set (Real-Time). Each one has a particular scheduling policy. The purpose is to insure
the best interrupt latency for particular processes running in the RT CPU set.
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• Two classes of RT processes. They are all standard RT Linux processes. They just differ in
their mapping:

– Each RT CPU has just one bound RT Linux task, called RT0 (a real-time task of high-
est priority). Each of these tasks has the guaranty that its RT CPU will stay entirely
available to it. Only these user tasks are allowed to become non-preemptible on their
corresponding RT CPU. This property insures a latency as low as possible for all the
RT0 tasks. The RT0 tasks are the hard real-time tasks of ARTiS.

– Each RT CPU can run other RT Linux tasks but only in a preemptible state. These
tasks are called RT1+ (real-time tasks of priority 1 and below). They can use CPU
resources efficiently if RT0 does not consume all the CPU time. To keep a low latency
for RT0, the RT1+ processes are automatically migrated to a NRT CPU by the ARTiS
scheduler when they are on the way of becoming non-preemptible (when they call
preempt_disable() or local_irq_disable()). The RT1+ tasks are the soft real-
time tasks of ARTiS. They have no firm guaranties, but their requirements are taken
into account by a best effort policy. They are also the main support of the intensive
processing parts of the targeted applications.

– The other, non-real-time, tasks are named “Linux tasks” in the ARTiS terminology.
They are not related to any real-time requirements. They could coexist with real-time
tasks and are eligible as long as the real-time tasks do not require the CPU. As for the
RT1+, the Linux tasks will automatically migrate away from a RT CPU if they try to
enter in non-preemptible code section on such a CPU.

– The NRT CPUs mainly run Linux tasks. They also run RT1+ tasks when these are in a
non-preemptible state. To insure the load-balancing of the system, all these tasks can
migrate to a RT CPU but only in a preemptible state. When a RT1+ task runs on a NRT
CPU, it keeps its high priority above the Linux tasks.

• A particular migration mechanism. This migration aims at insuring a low latency to the
RT0 tasks. All the RT1+ and Linux tasks running on a RT CPU are automatically migrated
toward a NRT CPU when they try to disable the preemption. One of the main changes
which is required from the original Linux load-balancing mechanism is the removal of inter-
CPU locks. To effectively migrate the tasks, a NRT CPU and a RT CPU have to communicate
via queues. We implement an asymmetric lock-free FIFO with one reader and one writer to
avoid any active wait of the ARTiS scheduler [19].

• An efficient load-balancing policy. It will allow to benefit from the full power of the SMP
machine. Usually the load-balancing mechanism aims to move the running tasks across the
CPUs in order to insure that no CPU is idle while some tasks are waiting to be scheduled on
the other ones. Our case is more complicated because of the specificities of the ARTiS tasks.
The RT0 tasks will never migrate, by definition. The RT1+ tasks should migrate quicker
than Linux tasks to RT CPUs: The RT CPUs offer latency warranties that the NRT CPUs
do not. To minimize the latency on RT CPUs and to provide the best performances to the
global system, particular asymmetric load-balancing algorithms have been defined [17].

• Asymmetric communication mechanisms. On SMP machines, tasks exchange data by
read/write mechanisms on the shared memory. To insure the coherence, critical sections
are needed. Those critical sections are protected from simultaneous concurrent access by
lock/unlock mechanisms. This communication scheme is no suited to our particular case:
An exchange of data between a RT0 task and a RT1+ will involve the migration of the RT1+
task before this later takes the lock, to avoid entering in a non-preemptible state on a RT
CPU. Therefore, an asymmetric communication pattern should use lock free FIFO in a one-
reader/one-writer context.

ARTiS supports three different levels of real-time processing: RT0, RT1+ and Linux. RT0
tasks are implemented in order to minimize the jitter due to non-preemptible execution on the
same CPU, but these tasks are still user-space Linux tasks. RT1+ are soft real-time tasks but
they are able to take advantage of the SMP architecture, in particular for intensive computing.
They are also able to trigger asymmetric communications that avoid inappropriate migrations
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Figure 1: Example of a task architecture in an ARTiS application.

due to lock/unlock calls. A migration mechanism insures a good load-balance between all the
processors. Eventually, Linux tasks can run without intrusion on the RT CPUs. Then they can
use the full resources of the SMP machines.

3 Application Deployment over ARTiS
A real-time application on a SMP machine exhibits its full meaning when real-time constraints are
combined with intensive computing. ARTiS is dedicated to this kind of applications. Real-time
constraints are satisfied by RT0 tasks. Communications between RT0 and RT1+ provide intensive
computing with data flow. Linux tasks insure additional processing. The load-balancing insures
a dynamic mapping of the different tasks on the CPUs.

The implementation of an application on ARTiS requires to identify a specific level of real-
time for each task of the algorithm and to map these tasks on the CPUs of the multiprocessor.
To illustrate this, we use a real-time manufacturing quality management: For example, defect
identification on a continuous production line running on a four CPUs SMP, three CPUs for the
RT set and one for the NRT set. Several tasks may be identified, their communications and
mapping are illustrated on the figure 1:

• Some videocam and/or sensors receive data periodically. Up to three RT0 tasks can manage
the data acquisition with a latency compatible with real-time. Each of these tasks is assigned
to a RT CPU.

• Directly connected to those tasks, intensive data processing with regular data structures has
to be done for image processing. A static number of RT1 tasks are dedicated to this data-
parallel processing (à la OpenMP). They should communicate with RT0 and with other RT1
tasks without inappropriate migration. They are also mostly bound to a RT CPU, but will
migrate to the NRT CPU if they encounter a non-preemptible code. They make the most of
the SMP facilities.

• Then defect identifications have to be achieved with irregular data structures concerning
subsets of default parts. A dynamic number of RT2 are created. They have to communicate
with RT1 and together. Because the number of tasks is dynamic, the load-balancing policy
of ARTiS is very necessary: These tasks will run on the CPU dynamically chosen by the
system to uniformly load the different CPUs.

• Finally, some defect fitting can be done with a local database or an external database (ac-
ceded via MPI) to produce statistics... This is no more RT processing and Linux tasks can
take care of that. They are mainly mapped on the NRT CPUs but they can also use RT CPUs
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Figure 2: Mapping of the tasks on the RT and NRT processors.

when idle.

The figure 2 shows a possible mapping of those tasks on the two sets of processors: The RT and
NRT.

4 Performance Evaluation
Before implementing the ARTiS kernel itself, we have conducted some experiments in order to
evaluate the potential benefits of the approach in term of interrupt latency. We distinguished two
types of latency, one associated to the kernel and the other one associated to the user tasks.

Measurement method The experiment consisted in measuring the elapsed time between the
hardware generation of an interrupt and the execution of the code concerning this interrupt. The
experimentation protocol was written with the wish to stay as close as possible to the common
mechanisms employed by real-time tasks. The measurement task sets up the hardware so it gen-
erates the interrupt at a precisely known time, then it gets unscheduled and wait for the interrupt
information to occur. Once the information is sent, the task is woken up and the current time is
saved and the next measurement starts. This scheme is typical from the real-time applications,
waiting for an hardware event to happen, processing data according to the new parameters, send-
ing new information and returning to waiting mode. For one interrupt there are five associated
times, corresponding to different locations in the executed code (Figure 3):

• t′
0
, the interrupt programming,

• t0, the interrupt emission, it is chosen at the time the interrupt is launched,
• t1, the entrance in the interrupt handler specific to this interrupt,
• t2, the end of the interrupt handler,
• t3, the entrance in the user-space RT task.

We conducted the experiments on a 4-way Itanium II 1.3Ghz machine. It ran instrumented
Linux kernel versions 2.6.0, 2.6.1, and later, 2.6.4. Globally, we could notice improvements along
the versions, in particular when kernel preemption was activated. Hence, we are only presenting
the result from the latest tested version. The timer on which are based all the measurements is
the itc (a processor register counting the cycles) and the interrupt was generated with a cycle
accurate precision by the PMU (a debugging unit available in each processor [16]).

Even with a high load of the computer, bad cases leading to long latencies are very unusual.
Thus, a large number of measures are necessary. In our case, each test is composed of 300 mil-
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Figure 3: Chronogram of the tasks involved in the measurement code.

lions of measures, making each test about 8 hours long. With such a length, the results are repro-
ducible.

Interrupt latency types From the 4 measurement locations, two interesting values can be calcu-
lated. Their interest comes from the ability to associate them to common programming methods
and also from the significant differences along the tested configurations. Those two kinds of
latencies can be described as follow:

• The kernel latency, t1 − t0, is the elapsed time between the interrupt generation and the
entrance inside the interrupt handler function (pfm_interrupt_handler() in our case).
This is the latency that a driver would have if it was written as a kernel module following
the usual design method.

• The user latency, t3 − t0, is the elapsed time between the interrupt generation and the
execution of the associated code in the user-space real-time task. This is the latency a real-
time application would have if it was written entirely in the user-space. In POSIX systems,
there are two ways for the application to be notified of the interrupt: Either by handling a
signal or by returning from a blocking system call. The signal handling gave a minimum
user latency of 4µs instead of 2µs but the maximum values were very similar. The blocking
call method is more efficient so all the exposed results are only based on a blocking system
call (a read()).

The real-time tasks designed to run in user-space are programmed using the usual and stan-
dard POSIX interface. This is one of the main advantage that ARTiS provides. Therefore, within
the ARTiS context, the user latency is the most important one to study and analyze.

One could notice that the time t2 was not cited. Actually, t2 − t1 represents the jitter of the
interrupt handler execution time. However, it is fairly stable in regard to the configurations and
is always very small compared to the other two intervals (approximately 1µs).

The “ideal” ARTiS configuration In order to estimate the performance of the ARTiS system
before its full completion, we had to simulate it. So, based on a vanilla Linux kernel, we set up a
configuration which is asymmetric in the same way that ARTiS is. It consists in a manual binding
of each task on the CPU on which ARTiS would execute it:

• The measurement task, equivalent to a RT0 process, is run on a specific CPU (a RT CPU),
• The tasks doing CPU load exclusively in user-space, equivalent to the RT1+ or NRT tasks

never disabling preemption, are run on each CPU,
• All the other tasks, equivalent to the NRT tasks disabling preemption, are run on another

specific CPU (a NRT CPU).

Additionally, the interrupts which are not used by the measurement task are bound to a NRT
CPU. The repartition was pre-selected and non-modifiable during the tests.
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This environment is purely static and is equivalent to a snapshot of the ARTiS system with
those specific tasks running. Excepted a slight modification of the kernel to prevent kernel
threads to run on RT CPU, all the configuration has been done from user-space. From the mea-
surement point of view, this configuration can be considered as an “ideal” ARTiS because there
is no latency overhead due to the migrations or the load-balancing.

Measurement conditions The measures have been conducted under different conditions. We
have identified three unrelated parameters which affect the interrupt latencies:

• The load. The machine can be either idle (without any load) or highly loaded (all the
programs described below are executed concurrently).

• The kernel preemption. When activated, this new feature of the 2.6 Linux kernel allows
to re-schedule tasks even if kernel code is being executed. This configuration of the Linux
kernel correspond to the so-called “preemptible Linux kernel”.

• The CPU partitioning can be either symmetric, the standard configuration, or asymmetric,
as defined in the “ideal” ARTiS configuration.

The eight configurations that can be obtained from the combination of those three parameters
were measured during short runs (10 minutes). From the results, four combinations were selected
for their particular interest. They can be built by incrementally switching the parameters: A
vanilla kernel without and with load, a loaded kernel with preemption activated and a loaded
“ideal” ARTiS configuration. We restrained the set because idle configurations would not show
any particular long latency and an asymmetric configuration without kernel preemption would
not make sense.

In the experiments, the system load consisted of busying the processors by user computation
and triggering a lot of different interruptions in order to maximally activate the inter-locking and
the preemption mechanisms. To achieve this goal, four types of program corresponding to four
loading methods were used:

• Computing load: A task that executes an endless loop without any system call is pinned
on each processor, simulating a computational task.

• Input/output load: The iodisk program reads and writes continuously on the disk.
• Network load: The ionet program floods the network interface by doing ICMP

echo/reply.
• Locking load: The ioctl program calls the ioctl() function that embeds a big kernel lock.

Observed latencies The tables 1 and 2 summarize the measures for the different tested config-
urations. Three values are associated to each kind of latency type (kernel and user). “Maximum”
is the highest latency noticed along the 8 hours. The two other columns display the maximum
latency of the 99.999% (respectively 99.999999%) best measures. For this experiment, this is equiv-
alent to not counting respectively the 3000 (resp. 3) worse case latencies.

Although the study of an idle configuration does not bring very much informations by itself,
it gives some comparison points when confronted to the results of the loaded systems. The ker-
nel latencies are nearly unaffected by the load. However, the user latencies are several orders
bigger. This is the typical problem with Linux simply because it was not designed with real-time
constraints in mind.

The kernel preemption does not change the latencies at the kernel level. This was expected
as the modifications focus only in scheduling faster user tasks, nothing is changed to react faster
in the kernel side. However, considering user-space latencies, a significant improvement can
be noticed in the number of observed high latencies: 99.999% of the latencies are under 457µs
instead of 2.829ms. Unfortunately, the maximum value of these user-space latencies are very
similar, in the order of 40ms. This enhancement permits soft real-time with better results than
the standard kernel but in no way it allows hard real-time for which even one latency over the
threshold is unacceptable.
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Table 1: Kernel latencies of the different configurations.
Kernel

Configurations 99.999% 99.999999% Maximum
standard Linux idle 78µs 94µs 94µs
standard Linux loaded 77µs 98µs 101µs
Linux with kernel preemption loaded 76µs 98µs 101µs
“ideal” ARTiS loaded 3µs 8µs 9µs

Table 2: User latencies of the different configurations.
User

Configurations 99.999% 99.999999% Maximum
standard Linux idle 82µs 174µs 220µs
standard Linux loaded 2.829ms 41ms 42ms
Linux with kernel preemption loaded 457µs 29ms 47ms
“ideal” ARTiS loaded 8µs 27µs 28µs

Eventually, in the ARTiS simulated environment both kind of latencies are very significantly
lowered. It can be surprising that the kernel latencies are even better than with the idle configu-
ration. This is due to the fact all the interrupts are redirected to another processor and much less
use of code is disabling the interrupts. Concerning the user latencies, the improvement is even
better (dropping from a maximum around 40ms to about 30µs). With the limit we have fixed to
300µs, the system can be considered as a hard real-time one, insuring real-time applications very
low interrupt response.

The standard Linux kernel, with more than 3000 response times longer than 2ms can not
be considered for real-time. The gain from the kernel preemption may permit soft real-time.
However, only the simulation of ARTiS has small variance between latencies and can insure
latencies always under 300µs. It is the only configuration on which a hard real-time system can
be based.

5 ARTiS Current Implementation
A basic ARTiS API has been defined. It allows to deploy applications on the current implemen-
tation of the ARTiS model, defined as a modification of the 2.6 Linux kernel.

A user defines its ARTiS application with a configuration of the CPUs, an identification of
the real-time tasks and their processor affinity via a basic /proc interface and some functions
(sched_setscheduler()...).

The current implementation mainly consists in the migration mechanism that ensures only
preemptible code is executed on a RT CPU. This migration relies on a task FIFO implemented
with lock-free access [19]: One writer on the RT CPU and one reader on the NRT CPU.

Despite that this first implementation is not yet complete, especially in regards with the load-
balancing algorithms and the interprocess communication mechanisms, the first performance
elements show good results.

The point is that the ARTiS implementation only adds limited non-preemptible code and that
this code is independant from the other CPUs. For instance, it does not share a lock with another
CPU, thus not introducing any unbounded latency. We have measured the maximum latency
penalty of the ARTiS implementation over the “ideal” ARTiS configuration in the order of 10µs.
Consequently, this qualifies the ARTiS system as a hard real-time operating system.

Although all the ARTiS mechanisms are not yet implemented, the system is already usable. It
effectively guarantees the possible preemption on a RT CPU, excepted when this CPU runs the
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Linux load-balancing. The main evolution of this implementation concerns the load-balancing
but we are also investigating the kernel threads comportment and their influence on the latencies.
Obviously some of them may migrate or be bound to a NRT CPU (such are kjournald that deals
with journalized file systems). Other may have to be replaced, as it is the case with the per-CPU
load-balancing thread.

6 Conclusion
We have identified applications that may benefit from an Open Source real-time systems that is
able to exploit the full power of multiprocessors and that let real-time tasks cohabit with other
and general purpose tasks. We have proposed ARTiS, a system based on a partition of the mul-
tiprocessor CPUs, between RT processors where tasks are protected from jitter on the expected
latencies and NRT processors where all the code that may lead to a jitter is executed. This par-
tition does not exclude a load-balancing of the tasks on the whole machine, it only implies that
some tasks are automatically migrated when they are on the way of being non-preemptible.

The ARTiS model has been evaluated on a 4-way IA-64 and a maximum user latency as low
as 30µs can be guaranteed (against latencies in the 40ms range for the standard 2.6 Linux kernel,
an improvement factor of 1000).

ARTiS is also currently implemented as a modification of the Linux kernel. Despite not being
yet completed, the implementation is already usable. The ARTiS patches against the Linux 2.6
kernel are available for Intel i386 and IA-64 architectures from the ARTiS web page [12].
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