
Observation-Based Modeling for Testing and
Verifying Highly Dependable Systems – A

Practitioner’s Approach

Teemu Kanstrén1, Eric Piel2, Alberto Gonzalez2, and Hans-Gerhard Gross2

1 VTT, Kaitováylá 1, Oulu, Finland
teemu.kanstren@vtt.fi

2 Delft University of Technology, Mekelweg 4, 2628 CD Delft
{e.a.b.piel,a.gonzalezsanchez,h.g.gross}@tudelft.nl

Abstract. Model-based testing (MBT) can reduce the cost of making
test cases for critical applications significantly. Depending on the formal-
ity of the models, they can also be used for verification. Once the models
are available model-based test case generation and verification can be
seen as “push-button solutions.” However, making the models is often
perceived by practitioners as being extremely difficult, error prone, and
overall daunting.
This paper outlines an approach for generating models out of observa-
tions gathered while a system is operating. After refining the models with
moderate effort, they can be used for verification and test case genera-
tion. The approach is illustrated with a concrete system from the safety
and security domain.

1 Introduction

Testing consumes a large portion of the overall development cost for a software
project. Because testing adds nothing in terms of functionality to the software,
there is a strong incentive towards test automation with Model-Based Testing
(MBT). Once the models are made and appropriate tools are available, MBT is
a push-button solution. Making the models of the System Under Test (SUT),
to be used for automated processing and test case generation, does not add any
immediate auxiliary value to the final product as well. Moreover, it is typically
perceived by practitioners as being difficult, expensive, and overall daunting. One
solution for circumventing the difficult and costly manual design and construc-
tion process to obtain models for MBT is to generate them out of observations
automatically [5], e.g., with the aid of a process mining technique [9].

Obviously, this method of observation-based modeling has to be “boot-
strapped” and, therefore, works only on existing software with existing runtime
scenarios, e.g., field data and existing test suites [2]. Because most typical soft-
ware projects in practice have test suites, Observation-Based Modeling (OBM)
can be adopted easily by practitioners, and can, eventually, offer automated sup-
port for constructing system specification models to be used for system testing
following system evolution.



2 T. Kanstrén, A. Gonzalez, E. Piel, H.-G. Gross

This article presents and outlines a method for model-based testing driven
by observation-based modeling. The method is supported by a compilation of
existing techniques and tools that have been combined and integrated in order to
devise a practical, iterative and (semi-) automatic way to support the creation of
behavioural models out of execution traces (observations). The models are made
specifically for model-based testing, and they are applied to test and verify a
component of a maritime safety and security system. Evaluation of the proposed
approach indicates that system specification models for a security system can be
boot-strapped from existing execution scenarios, and that they can be refined
into models suitable for MBT with relatively little manual user involvement.

The paper is structured as follows. Sect. 2 presents work related, Sect. 3 de-
scribes our proposed approach of model-generation, verification, refinement, and
testing. Sect. 4 presents evaluation of the work, and finally, Sect. 5 summarizes
and concludes the paper with future directions.

2 Background and Related Work

OBM demands that (test) executions of the system under test can be observed,
also referred to as tracing. Tracing is widely used in dynamic analysis of programs
and it can be applied to observe which components, methods, or basic building
blocks are invoked during execution, in order to turn this information into a
behavioural model of the software [2]. In addition, external tracing mechanisms
such as aspects [6] provide the advantage that the source code does not have to
be amended for supporting the tracing.

Finite State Machines (FSM) and Extended FSM (EFSM) are of particular
interest for behavioural modeling and, consequently, for behavioural testing [8].
They describe the system in terms of control states and transitions between
those states. EFSM add guard conditions to the more general FSM.

Bertolino et al. [1] proposed three steps to the automated “reverse-
engineering” of models to be used for model-based testing, but they never real-
ized their proposition. Our method outlined here takes their ideas further and
discusses a concrete implementation with existing tools. Ducasse et al. [4] use
queries on execution traces to test a system. In this article, we apply similar
techniques to help understand what a system does, and to test it. D’Amorim
et al. [3] apply symbolic execution and random sequence generation for iden-
tifying method invocation sequences of a running system. They devise the test
oracle from exceptions and from monitoring executions violating the system’s op-
erational profile, described through an invariant model. Our proposed method
follows their approach of generating the test oracle. Lorenzoli et al. [7] present a
way to generate EFSM from execution traces, based on FSM and Daikon3. They
use the EFSM for test case selection in order to build an optimal test suite.

3 http://groups.csail.mit.edu/pag/daikon



Observation-Based Modeling for Testing and Verifying Dependable Systems 3

3 Observation-Based Modeling

Observation-Based Modeling turns the traditional MBT approach around as
described in [1]. Instead of creating a model manually, based on a (non-formal)
specification, the model is created from the implementation, based on executing
a limited number of initial test cases, and tracing their executions. OBM can be
used to generate the test model for MBT, the test harness, and the test oracle,
by monitoring the SUT’s input and output during a selected set of execution
scenarios. The entire process can be divided in four different activities, as detailed
below.

3.1 Capturing a set of observations

The first step in OBM is to capture a suitable set of observations to be used as a
basis for the initial model generation. To obtain observations, the SUT behaviour
is monitored while exercising it using a set of existing execution scenarios, such
as existing test cases, recorded user sessions, or field data [2].

The main information required to be captured are the messages passed
through the input- and output-interfaces of the SUT, and the SUT internal
state each time a message is passed. Typical component middlewares allow to
list the component interfaces and to capture all component interactions, with-
out having to instrument every component individually. Obtaining the internal
state might be harder, as our approach strives to be compatible with black-box
components. Accessing this information typically requires an additional test in-
terface or serialization interface designed into the SUT. In case this is lacking,
either the SUT must be manually extended, or it could be possible to maintain
an “artificial” state out of the inputs and outputs.

3.2 Automatic generation of the model

The second activity consists in processing those traces and generating an initial
behavioural model. This model, expressed as an EFSM, requires the production
of states, transitions, and guards.

The generation of the initial EFSM comprises four phases. First, the static
parts of the model are generated. These parts are similar for all generated models,
and the provided SUT interface definitions are the variables used as input in
this phase. Second, an FSM is generated which describes the SUT in terms of
interface usage, where each message passed through one of the interfaces matches
a state in the FSM. This is done via the ProM tool [9]. This FSM is analysed
and processed with specific algorithms to capture the interactions (states and
transitions) for the EFSM. Third, invariants over the SUT internal state and
parameter data values are provided, and then used to generate constraints, i.e.,
transition guards, for the interactions and for the processed data values (input
data). Finally, all these separate parts of the model are combined to produce
the complete EFSM. Fig. 1 presents a very simple example of EFSM specified in
the same way as a model generated by our tool. The current state of the model



4 T. Kanstrén, A. Gonzalez, E. Piel, H.-G. Gross

is reported by one special method getState(). Every transition is described by
one method (e.g.: vend()) plus an associated method describing its guard (e.g.:
vendGuard()).

public class VendingMachineModel implements FsmModel {
private int money = 0;

public Object getState () { return money; }
public void reset(boolean b) { money = 0; }

@Action public void vend() {money = 0;}
public boolean vendGuard () {return money == 100;}

@Action public void coin25 () {money += 25;}
public boolean coin25Guard () {return money <= 75;}

@Action public void coin50 () {money += 50;}
public boolean coin50Guard () {return money <= 50;}

}

0

50

coin50 25

coin25

75

coin25

100

coin50

coin25

vend

coin25

coin50

Fig. 1. Example EFSM of a vending machine.

3.3 Test execution

In order to generate the test cases out of the EFSM, our approach relies on
ModelJUnit4. A test case is created for every possible path going through the
various states, along the transitions. Let us note that in this type of model, the
lack of some states or transitions compared to the “perfect” model signifies only
that the modeled behaviour is not complete, but still represents only allowed
behaviour. It is therefore possible to run the test execution before the model is
finalized.

In our approach, each transitions contains code to actually send and listen
messages from the SUT. Each transition also contains JUnit5 assertions to de-
termine if the correct messages were answered. The triggering of an assertion
implies failure of the test case. The test case is considered passed if no assertion
was triggered during the entire execution of the path.

3.4 Manual refinement

The fourth activity for the MBT consists in manual improvement of the gener-
ated EFSM. It is typically performed in parallel to the test execution activity.
4 http://czt.sourceforge.net/modeljunit
5 http://www.junit.org



Observation-Based Modeling for Testing and Verifying Dependable Systems 5

In addition to defining the initialization of the complex variables, the task of
the engineer is to refine and generalize the EFSM to match the generic expected
behaviour of the SUT, which might be different from the observed behaviour.
This manual activity should be done in little gradual steps, guided by the results
of the tests which exercise the new paths introduced by the generalization of the
model at the precedent step.

4 Case study

An example SUT called Merger is used to illustrate the techniques. It is part
of a maritime surveillance system. It receives information broadcasts from ships
called AIS messages and processes them in order to form a situational picture
of the coastal waters. The Merger acts as temporary database for AIS messages,
and client components can consult it for track information of ships, or receive
notifications of certain ship events. The SUT is also used by software controlling
the main screen in the command and control centre for displaying ship tracks.
The system comes with a specification in plain English defining behaviour and
communication protocols of its components. The components are implemented
in Java, executed under the Fractal component framework6.

4.1 Qualitative evaluation

The Merger component was first instrumented to allow observing a few vari-
ables representing its global state and the method calls. Then, observation of
the component was performed while 6 manually written unit tests were run and
during five minutes of normal operation with field input data. An EFSM was
generated out of the traces. This model was manually refined (470 lines of code
were changed over 1700) mainly by defining initialization code, generalizing the
guards, and correcting the expected behaviour depending on the specification.
The refinement process took place with feedback from the generated tests which
gradually tested more behaviour of the component. When a bug in the Merger
component was found, it was immediately fixed and the refinement process re-
sumed. The refinement and testing process was finished when all the states were
accessed, and none of the generated test cases failed.

During this process several errors were found. These errors can be classified
into three main types: mismatches between implementation and specification
(3), ambiguities in the specification (1), and problems in the design that cause
errors under certain conditions specific to the testing environment (2). Overall,
in terms of identifying previously unknown errors of a component that had been
used for some time in this context, this can be regarded as a very successful
model-based testing experiment with real value to the quality of the system.

The evaluation of the method presented, performed in the Merger case study,
indicates that the models generated can be used well for model-based testing
after moderate manual amendments.
6 http://fractal.ow2.org



6 T. Kanstrén, A. Gonzalez, E. Piel, H.-G. Gross

4.2 Quantitative evaluation

In order to evaluate the efficiency of the approach, two quantitative evaluations
have been also performed. First, using the source code of the Merger component,
the coverage of the generated tests has been measured. The measurements are
shown in Table 1. Here, Unit tests refer to the six initial unit tests used as
execution scenarios. EFSM refers to the tests generated by the MBT tool out
of the final refined model. The four columns correspond to four different types
of coverage: statement, method, conditional, and path coverage. This latter one
is the number of unique paths in the final EFSM which were followed during a
test.

Source Statements Methods Conditionals Paths

Unit tests 53.5% 64.5% 38.7% 6

EFSM 64.1% 67.7% 48.4% 87

EFSM + Unit tests 65.5% 67.7% 51.6% 92

Table 1. SUT coverage breakdown by execution scenarios.

It is visible that the tests generated from the model provide a significant
increase in coverage over the used unit tests. The EFSM set outperformed the
initial tests by a small percentage due to observation of the system also on field
data, as well as due to the generalization of the generated model in the veri-
fication and testing refinement phase. This generalization permitted execution
of additional parts of the code, while most parts executed by the original tests
are still executed. The biggest difference is in the Paths metric. EFSM largely
outperforms the initial tests. Nevertheless this is what is to be expected from an
MBT tool that is intended to generate complex interactions to test the SUT.

Second, mutation testing was used to evaluate the effectiveness of the gen-
erated test suite. Mutation testing consists in introducing a modification in the
code of SUT, and to check whether a test suite is able to detect this “mutation”.
117 “mutants” were automatically generated, of which 51 were considered se-
mantically equivalent after manual inspection. The results are shown in Table 2.
When a test finds no errors (the SUT is considered to operate fine), the result is
termed “positive”, and oppositely, when an error is reported, it is termed “nega-
tive”. “False positives” are the mutations reported fine although it was manually
verified that they behave outside of the specification sometimes. “False negative”
would be a case where a correct SUT is classified as having an error.

Source True positive False positive True negative False negative Total

Unit tests 51 16 50 0 117

EFSM 51 15 51 0 117

Table 2. Mutation test results.

The final model provides minimal gain over the initial unit tests. The model
outperforms the unit tests in correct categorization of mutants with actual modi-
fied behaviour only by a slight margin. Nevertheless, it is worthy to note that the



Observation-Based Modeling for Testing and Verifying Dependable Systems 7

correct categorizations done by the EFSM are a superset of the one performed by
the unit tests. The generated model could detect all the bugs originally detected
by the units tests and more.

5 Conclusions

Dependable systems need a high quality of engineering in order to ensure the
stability and the correct behaviour of the implementation. Models are useful
assets for system engineering. They can be used for specification, verification,
reasoning, and test case generation. Once models are available, powerful tools
and techniques can be applied to support a range of activities. However, making
the models is still perceived by practitioners as being difficult, costly, and error
prone. A way to circumvent the difficult modeling process is to have specification
models derived automatically from observations from a running system. Because
such models specify observed behaviour, rather than expected behaviour, they
have to be amended, in order to be applied, eventually, for verification and test
case generation.

This paper has presented a approach to bootstrap, refine, and verify models
from execution traces, to be used primarily for model-based testing.

References

1. A. Bertolino, A. Polini, P. Inverardi, and H. Muccini. Towards anti-model-based
testing. In Fast Abstract in The Int’l. Conf. on Dependable Systems and Networks,
DSN 2004, Florence, 2004.

2. B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A sys-
tematic survey of program comprehension through dynamic analysis. IEEE Trans-
actions on Software Engineering, 2009.

3. M. d’Amorim, C. Pacheco, D. Marinov, T. Xie, and M.D. Ernst. An emprical com-
parison of automated generation and classification techniques for object-oriented
unit testing. In: 21st Intl. Conf. on Automated Software Engineering (ASE’06),
pp. 59–68, Tokyo, Japan, Sept. 2006.

4. S. Ducasse, T. Girba, and R. Wuyts. Object-oriented legacy system trace-based
logic testing. In: Conf. on Software Maintenance and Reengineering (CSME’2006),
pp. 37–46, 2006.

5. A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge. Recovering behavioral
design models from execution traces. In 9th European Conf. on Software Mainte-
nance and Reengineering (CSMR’2005), pages 112–121, 2005.

6. G. Kiczales, E. Hilsdale, J. Hugumin, M. Kersten, J. Palm, and W. Griswol. Getting
started with AspectJ. Communcation of the ACM, 44(10):59–65, 2001.

7. D. Lorenzoli, L. Mariani, and M. Pezze. Automatic generation of software behav-
ioral models. In 30th Intl. Conf. on Software Engineering (ICSE’08), pp. 501–510,
Leipzig, 2008.

8. M. Uttig and B. Legeard. Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufman, 2006.



8 T. Kanstrén, A. Gonzalez, E. Piel, H.-G. Gross

9. W. M. P. van der Aalst, B. F. van Dongen, C.W. Gnther, R. S. Mans, A. K.
A. de Medeiros, A.Rozinat, V. Rubin, M.Song, H. M. W. Verbeek, and A. J.
M. M. Weijters. Prom 4.0: Comprehensive support for real process analysis. In
Application and Theory of Petri nets and Other Models of Concurrency 2007,
volume 4546, pages 484–494. Springer, Berlin, Germany, 2007.


