
Minimising the Preparation Cost of Runtime Testing based on Testability Metrics
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Abstract—Test cost minimisation approaches have tradi-
tionally been devoted to minimising “execution costs”, while
maximising coverage or reliability. However, in a runtime
testing context, the amount of coverage or reliability that can
be achieved, in other words, the system’s Runtime Testability, is
limited by the adverse effects that the interferences of runtime
tests have on the system. Supporting runtime testing, therefore,
introduces an additional cost in “preparatory” activities in
software, (e.g., testable components) and in hardware (e.g.,
more memory), before certain runtime tests can be executed.

In this paper we present a low-complexity, cost minimisation
algorithm for the optimal selection of preparation activities,
based on a near-optimal trade-off between preparation cost
and a structure-based measurement of Runtime Testability,
coined the Runtime Testability Metric (RTM). We perform
a theoretical and empirical validation of RTM, showing that
RTM is indeed a valid, and reasonably accurate measurement
with ratio scale. We also present empirical data demonstrating
the near-optimal performance at a low computational cost of
our algorithm.

I. INTRODUCTION

Critical and high-availability systems, such as air traf-
fic control systems, systems of the emergency units, and
banking applications, are becoming more and more complex
and dynamic. Moreover, in the case of Systems of Systems,
or Service Oriented Architectures components may not be
available until deployment time, e.g., third party external
services. Components can be even unknown at deployment
time.

The testing process of these kind of systems was tradi-
tionally performed either in a separate, identical copy of
the system, or by taking the system offline. This cannot be
done anymore for modern systems such as the ones already
mentioned [3], [6], [11].

Runtime testing is emerging as the solution for the valida-
tion and acceptance testing of the above systems. Runtime
testing is a testing method that has to be carried out in the
final execution environment of a system [3], [4], [9], [15],
[17].

However, in practice many parts of the system cannot be
tested because they would affect the system in critical ways
that are difficult to control or impossible to recover from.
In order to test those parts, an additional expense in the test
preparation phase is required, both in software development
and in hardware. Therefore, not only the execution costs of

testing, but also the preparation costs need to be minimised,
by means of a preparation plan: an optimal combination of
modules of the system that have to be made runtime testable.

The optimisation problem of preparation cost with re-
spect to runtime testability has only been addressed very
recently [10], [12]. Runtime testability (RTM) constitutes an
upper bound on what can be subsequently achieved in the
test execution phase based on the systems’s structure and the
location of untestable components.

The previous definition of RTM had an umber of short-
comings: (1) it did not take into account the real-valued
preparation costs; (2) no theoretical characterisation of RTM
was performed from the point of view of measurement
theory; (3) no empirical evaluation of RTM was performed;
and (4) no computationally efficient algorithm was presented
that would allow test engineers to efficiently generate a
preparation plan for systems of realistic size.

In this paper we address the above issues. In particular,
this paper makes the following contributions:

1) We present a new, improved model and definition of
RTM.

2) We provide a measurement-theoretical characterisation
of RTM.

3) We perform an empirical evaluation of RTM based on
two real systems.

4) We introduce two low-cost greedy algorithms to be
used in obtaining a near-optimal preparation plan.

The paper is organised as follows. Section II introduces
RTM. In Section III its theoretical characterisation is per-
formed. The empirical study on the accuracy of RTM is
presented in Section IV. The low-cost prioritisation algo-
rithm is presented in Section V. Related work is presented
on Section VI. Section VII wraps up the paper and addresses
future work.

II. RUNTIME TESTABILITY

Runtime testability is the degree to which a system can
be runtime tested. A numerical measurement for the runtime
testability of a system can be defined in terms of what
amount of fault sites in the system can be runtime tested,
relative to the maximum test coverage attainable by the
system testers under runtime testing conditions.



Runtime testability can be expressed empirically by the
maximum coverage that can be reached by runtime tests,
defined as

ERT = |Cov| (1)

where Cov represents the set of possible fault sites (accord-
ing to a coverage criterion) which can be covered by runtime
tests. The rationale behind this definition is that if a fault
site cannot be exercised in testing, the number of faults that
remain undetected in the system after runtime testing will
be higher.

In this section we will present the formal definition of
RTM and the prediction model used to obtain it.

A. Model of the System
We use a dependency graph, which captures the ar-

chitecture of the system at the moment of testing. This
way of representing dependencies is known as Component
Interaction Graph (CIG) [19].

A CIG is defined as a directed graph with weighted
vertices, CIG = 〈V, V0, E, c〉, where
• V ≡ VP ∪ VR: vertices in the graph, formed by the

union of the sets of provided and required operations
by the components’ interfaces.

• V0 ⊆ V : input operations to the system, i.e., operations
directly accessible to test scripts.

• E ⊆ V × V : edges in the graph, representing de-
pendencies between operations in the system. E.g., if
(v1, v2) ∈ E, v1 depends on v2.

• c : V → R+: function that maps a specific operation
to the preparation cost that is going to be optimised.

Because of the lack of state and control flow information
in the CIG model, the following assumptions are made
about the actual behaviour of the system:

1) Control flow paths are independent.
2) When the control flow reaches an operation (vertex)

it will always propagate to all dependencies (edges).
The first assumption is needed because the CIG does not
reflect data dependencies between different operations. The
second assumption is necessary because we do not know
which edges in the CIG will be traversed by a test case.
In the extreme case, the interaction might propagate through
all edges, affecting all reachable vertices.

B. Definition of RTM
Following our model and assumptions, the total prepara-

tion cost needed to involve an operation in a runtime test,
taking into account the individual preparation costs of all
the operations it depends on, is defined as

C(vi) =
∑

vj∈Svi

c(vj) (2)

where vi and vj are operations, and Svi
is the set of

successors of vertex vi, i.e., all the vertices reachable from
vi including vi itself.

The initial definition of RTMconsidered only those oper-
ations where C(vi) = 0, defining RTM as

RTMold = |{vi ∈ V : C(vi) = 0}| (3)

This definition assumed that any operation on any in-
terface of any component in the system can be invoked
directly by test scripts, i.e., that every operation is an input
operation. This is unrealistic in most cases. In this paper we
drop this assumption by means of the set of possible input
vertices V0, by requiring that operations can be reached from
a testable input vertex v0 ∈ V0, i.e., that vi ∈ Sv0 and whose
C(v0) = 0. RTM can be then defined as

RTM =|{vi ∈ V : C(vi) = 0 ∧
∃v0 ∈ V0 : vi ∈ Sv0 ∧ C(v0) = 0}|

(4)

III. THEORETICAL VALIDATION

In this section, we establish the characteristics of the RTM
measurement from a measurement-theoretical point of view.
It allows us to identify what statements and mathematical
operations involving the metric and the systems it measures
are meaningful and consistent. We will concentrate (1) on
RTM’s fundamental properties, and (2) on its type of scale.

A. Fundamental Properties

In this section, we will study the properties required
for any measurement. The properties were described by
Shepperd and Ince in [16] through an axiomatic approach.

Axiom 1: It must be possible to describe the rules gov-
erning the measurement.

This is satisfied by the formal definition of RTM and the
CIG.

Axiom 2: The measure must generate at least two equiv-
alence classes.

∃p, q ∈ CIG : RTM(p) 6= RTM(q)

It is trival to obtain two CIGs that satisfy this axiom and
no example will be provided.

Axiom 3: An equality relation is required.
This axiom is satisfied given that our measurement is

based on natural numbers, for which an equality relation
is defined.

Axiom 4: There must exist two or more structures that
will be assigned the same equivalence class.

∃p, q ∈ CIG : RTM(p) = RTM(q)

It is trival to obtain two CIGs that satisfy this axiom and
no example will be provided due to space concerns.

Axiom 5: The metric must preserve the order created by
the empirical property it intends to measure. This axiom is
also known as the Representation Theorem.

∀p, q ∈ CIG : p �
rt

q ⇔ RTM(p) ≥ RTM(q)



where �
rt

represents the empirical relation ‘more runtime

testable than’.
This last axiom means that for any two systems, the order-

ing produced by the empirical property “runtime testability”
has to be preserved by RTM. It is possible to find systems
for which this axiom does not hold for RTM, because of
the assumptions that had to be made (see Section II-A).
However, we can empirically assess the effect of these
assumptions on the consistency and accuracy of RTM. An
empirical study about the accuracy of RTM is presented in
Section IV.

B. Type of Scale

The theoretical characterisation of the metric’s scale type
(i.e., ordinal, interval, ratio, absolute) determines which
mathematical and statistical operations are meaningful. This
is important, because certain optimisation algorithms require
specific mathematical operations that might not be meaning-
ful for RTM, for example for defining heuristics as we will
see in Section V.

Assuming RTM satisfies Axiom 5, i.e., it preserves the
empirical ordering of runtime testability, then, by definition,
RTM defines a homomorphism from runtime testability to
the Natural numbers. Therefore, by the ordered nature of
Natural numbers, we can assert that RTM can be used
as an ordinal scale of measurement. As will be noted in
Section IV, in practice this is true only for systems in which
our assumptions about control flow and dependencies hold.

In order to be able to use RTM as a ratio scale mea-
surement, in addition to the requirements for the ordinal
type of scale being satisfied, a concatenation operation with
an additive combination rule [20] must exist. A meaningful
concatenation operation is creating the union of both systems
by disjoint union of their CIG models. This operation,
∪ : CIG × CIG → CIG, can be defined as A ∪ B =
〈V, V0, E, c〉, where
• V ≡ VA ∪ VB

• V0 ≡ V0A ∪ V0B

• E ≡ EA ∪ EB

• c(v) =

{
cA(v) if v ∈ VA

cB(v) if v ∈ VB

For this concatenation rule, the additive combination rule

RTM(A ∪B) = RTM(A) + RTM(B) (5)

can be used. Therefore, RTM can be used as a ratio scale
with extensive structure (e.g., like mass or length), with
respect to the disjoint union operation.

C. Summary

We will highlight the most relevant practical implications
of the theoretical properties of RTM obtained in the previous
section.

Because we proved that RTM fulfils the minimal proper-
ties of any measurement, RTM can be used to discriminate

and equalise systems. Therefore, the statements ‘system A
has a different runtime testability than B’, and ‘systems A
and B have the same runtime testability’, are meaningful.
Moreover, as we proved RTM has an ordinal scale type,
RTM can be used to rank systems. The statement ‘system
A has more runtime testable operations than B’ becomes
meaningful, and this enables us to calculate the median
of a sample of systems, and Spearman’s rank correlation
coefficient.

Furthermore, by proving the ratio scale for RTM, it can
also be used to rate systems, making the statement ‘system
A has X times more runtime testable operations than B’ a
meaningful one. This allows performing a broad range of
statistic operations meaningfully, including mean, variance,
and Pearson’s correlation coefficient.

RTM can also be used alone to reason about the compo-
sition of two systems. Due to its additive combination rule,
‘systems A and B composed, will be RTM(A) + RTM(B)
runtime testable’ is a meaningful statement, provided that A
and B are disjoint.

IV. EMPIRICAL VALIDATION

In this section we conduct a number of experiments in
order to empirically determine how accurate RTM is with
respect to the empirical property of “runtime testability”
(ERT). Two systems were used in the experiment: (1)
AISPlot, a system-of-systems taken from a case study in the
maritime safety and security domain, and (2) WifiLounge,
an airport’s wireless access-point system [5].

A. Experimental Setup

To obtain the value of RTM, vertices are first classified
into testable and untestable by means of C(v) (see Eq. 2).
Our goal is to assess the influence of the assumptions made
when defining RTM, in the number of false positives and
false negatives of this classification, and in the final value
of RTM.

In order to have a baseline for comparison, the naive
approach of just counting directly testable operations was
used, in addition to RTMold and RTM, 500 variations of
the AISPlot and WifiLounge systems with different RTM
values were generated by choosing the untestable vertices
by randomly sampling in groups of increasing size from
2 to 30 untestable vertices. The value of ERT to perform
the comparison was obtained by executing an exhaustive
test suite in terms of vertices and execution paths. The set
of operations covered when executing each test case was
recorded. If a test case used any untestable operation, none
of the operations covered by the test were counted.

B. Results

From each system and metric pair in this experiment, we
recorded the following data:
• Mset: Set of operations classified as testable.



• Cov: Set of operations covered.
• fp = (|Mset − Cov|)/|Mset|: false positive rate, i.e.,

operations wrongly classified as testable.
• fn = (|Cov −Mset|)/|Cov|: false negative rate, i.e.,

operations wrongly classified as untestable.
• ē = ||Mset| − |Cov||: absolute error between the

predicted and empirical runtime testabilities.

System fp fn ē
NTES AISPlot 0.942 0.000 83.487

WifiLounge 0.713 0.000 57.093
RTMold AISPlot 0.882 0.107 15.012

WifiLounge 0.577 0.079 27.664
RTM AISPlot 0.411 0.111 2.418

WifiLounge 0.306 0.128 9.101

Table I
FALSE POSITIVE/NEGATIVE RATE, AND ERROR

Table I shows the rates of false positives and false
negatives, along with the absolute error, averaged over 500
runs. The deviation between RTM and the actual covered
operations for each sample can be seen in the three plots in
Figure 1. The dashed line represents the ideal target. Any
point above it, constitutes an overestimation error, and below
it, an underestimation error.

NTES: It can be seen that NTES has an extremely high
error caused by its high false positive rate (94% and 71%).
NTES has no false negatives as it classifies as untestable
only the vertices which are directly untestable, disregarding
dependencies.

RTMold: By taking control flow dependencies into ac-
count, the false positive rate of RTMold is lower than NTES,
at the price of introducing a number of false negatives. False
negatives appear because in some cases where the control
flow does not propagate to all of the operations’ dependen-
cies, as we had assumed. Still, because of the assumptions
that test interactions can start in any vertex, and that the
test paths are independent, the number of false positives is
considerable. The number of input vertices in WifiLounge is
proportionally higher than for AISPlot. Hence, the number
of false positives caused by this assumption is lower.

RTM: By taking input vertices into account, the amount
of overestimation decreases dramatically for both systems.
Still, the false positive rate is significant. Therefore, we
conclude that assuming that paths are not dependent is not
very reasonable and needs to be addressed in future work.

The increase of false negatives makes more apparent the
consequences of the assumption that control flow is always
being transmitted to dependencies. The error caused by this
assumption is augmented by the fact that it also applies to
the input paths to reach the vertex being considered.

V. PREPARATION PLAN COST MINIMISATION

Once the theoretical and empirical properties of RTM
have been established, RTM can be safely used for the

o
ld

ERT

ERT
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Figure 1. Accuracy of NTES, RTMold and RTM

elaboration of an optimal preparation plan with the objective
of achieving the highest possible runtime testability within a
given budget b. Mathematically, this problem is formulated
as

maximise: RTM

subject to:
∑

c(vj) · xj ≤ b, xj ∈ {0, 1}

where b is the maximum budget available, and xj represents
the decision of including vertex vj in the preparation plan
or not. Unfortunately, combinatorial optimisation problems



such as this one are NP-Hard, therefore, an optimal prepa-
ration plan cannot be calculated in polynomial time. An ap-
proximate solution with a smaller computational complexity
is needed.

A. Near-optimal Minimisation

In this section we present an approach to generate an
approximate preparation plan by using a greedy selection
heuristic method.

1) Heuristics: First, we consider a heuristic that takes a
pessimistic approach: it ranks higher the vertices that provide
the highest gain on testability in the next step. The count
is divided by the cost to penalise expensive nodes. The
heuristic is defined as

hpessimistic(vi) =
1
ci

(RTMvi
−RTM) (6)

where RTMvi is the value of RTM after the costs of vertex
vi have been covered. Given the pessimistic nature of this
heuristic, we expect this heuristic rank to perform well for
low budgets, and poorly for higher ones.

Our second heuristic takes an optimistic approach. It ranks
higher the vertices that appear in the highest number of P
sets, i.e., the vertices that will fix the most uncoverable
vertices assuming they only depend on the vertex being
ranked. This value is also divided by the cost to penalise
expensive nodes over cheaper ones. The heuristic is defined
as

hoptimistic(vi) =
1
ci
|{vj | vi ∈ Svj}| (7)

By ignoring the fact that an uncoverable vertex may be
caused by more than one untestable vertex, and that the
vertex may not be reachable through a testable path, this
second heuristic will take very optimistic decisions on the
first passes which affect the quality of results for proportion-
ally low budgets, and yields a better performance for higher
budgets.

The optimistic heuristic will skip many low-cost solutions
(its curve being much lower than the optimum), while
the pessimistic heuristic is more precise for low costs but
completely misses good solutions with higher budgets. A
simple solution to address these shortcoming is to combine
both heuristic rankings by taking the best results of both.

B. Computational Complexity and Error

The time complexity of the preparation plan computation
depends on the time complexity of the heuristic function. As
in each pass there is one less vertex in U , the H function is
evaluated |U |, |U | − 1, . . . , 1 times while searching for the
maximum. In total, it is evaluated |U |

2

2 times.
Both heuristic functions perform a sum that depends on

the total number of vertices in the system, the complexity
of the PREPARATIONPLAN function is O(|V | · |U |2), and
therefore polynomial.

Although a polynomial complexity is much more appeal-
ing than the O(2|U |) complexity of the exhaustive search,
the approximation error has to be taken into account.

A number of experiments were conducted to evaluate
the approximation error of our heuristic method. The plot
in Figure 2 shows the evolution of the relative average
approximation error of RTM for each of our heuristics, as
a function of the number of untestable operations |U |. The
optimal solution function is obtained by exhaustive search.
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Figure 2. Performance of the approximate algorithms compared to the
optimal

The average error incurred by our heuristics is very low
considering the processing time required for their calcula-
tion. Combining the rankings created by both the long and
short-term heuristics, by choosing the maximum of either
solution, yields the best of both methods while maintaining
the low computational complexity. This can be seen in the
combined error plot in Figure 2.

VI. RELATED WORK

Testability and testing effort was originally related to the
probability of a fault causing an error, this error propagating
to the output [13], [18], and the error being actually detected
by the test oracle [1].

However, testability is affected by many other factors and
its measurement has been studied extensively from various
points of view. A descriptive model of testability is presented
in [2]. A second descriptive model of testability is presented
in [8]. No evaluation, either theoretical nor empirical, is
performed. A number of potential quantitative metrics for
testability, relating system structure and dependencies to
regression test cost, were studied in [14]. A metric of
testability related is proposed in [7], based on the idea that
if a module’s input and output domains are not completely
defined by the module’s interface contract, it will require a
higher test effort (i.e., time needed to define test cases).

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have performed an in-depth study,
theoretical and empirical, of RTM, a metric designed to
measure the effect that untestable operations will have on



the runtime testability of a system. RTM has the properties
of a ratio scale type, and a relatively good accuracy although
there is room for improvement given the strenght of the
assumptions it relies on.

We have provided a low-cost approximation algorithm to
the improvement of the system’s runtime testability which
computes near-optimal preparation plans, significantly re-
ducing the computation time. This allows system engineers
to elaborate a preparation plan to prioritise the expenses in
the preparation phase of testing, with the goal of increasing
the runtime testability of the system at a minimum cost.

Future work will address the assumptions made in the
system model used to obtain RTM and increase the sample
of systems used in the empirical evaluation of RTM.
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