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Abstract—Runtime testing is emerging as the solution for the
integration and assessment of highly dynamic, high availability
software systems where traditional development-time integra-
tion testing is too costly, or cannot be performed. However,
in many situations, an extra effort will have to be invested
in implementing appropriate measures to enable runtime tests
to be performed without affecting the running system or its
environment.

This paper introduces a method for the improvement of
the runtime testability of a system, which provides an optimal
implementation plan for the application of measures to avoid
the runtime tests’ interferences. This plan is calculated con-
sidering the trade-off between testability and implementation
cost. The computation of the implementation plan is driven by
an estimation of runtime testability, and based on a model of
the system. Runtime testability is estimated independently of
the test cases and focused exclusively on the architecture of the
system at runtime.

I. INTRODUCTION

Integration and system-level testing of complex, dynamic

and highly available systems, such as Systems of Sys-

tems and Service Oriented Architectures, is becoming in-

creasingly difficult and costly to perform in a dedicated

development-time testing environment. Such systems cannot

be duplicated easily, nor can their usage context. Moreover,

in some cases, the components that will form the system are

not available, or even known beforehand. Proper testing and

validation of such systems can only be performed during

runtime. Runtime Testing poses considerable runtime inte-

gration and testing challenges to engineers and researchers

alike [1], [2], [3].

A prerequisite for runtime testing is the knowledge about

which parts of the system can be tested while the system

is operational without interfering with the system’s opera-

tion or its environment. This knowledge can be expressed

through the concept of Runtime Testability of a system [4].

Although runtime testing is also influenced by traditional

testability factors [5], [6], [7], [8], [9], the interferences

between the tests that are executed and the normal operation

of the system (which determines the viability of runtime

testing) are never taken into account. Features of the system

which will produce unacceptable interference when tested,

will have to be left untested, increasing the probability of

leaving undetected faults.

The main contribution of this paper is RiTMO, a method

to enhance the runtime testability of a system at deployment-

time, before the test cases are executed. RiTMO computes

an implementation plan for the application of isolation

measures to avoid interferences caused by runtime tests, and

therefore, improve the system’s runtime testability. For this

purpose, RiTMO uses an estimated value of runtime testa-

bility based on an annotated view of the system’s runtime

architecture, where the untestable features of the system have

been identified [4], combined with the cost of implementing

isolation measures needed to counter the interferences at the

root of the untestability. Our approach reflects the trade-off

that engineers have to consider, between the improvement of

the runtime testability of the system after some interferences

are addressed, and the implementation cost of the measures

that have to be applied. We present a detailed application

example of RiTMO to a system taken from our industrial

case study in maritime safety and security systems.

The paper is structured as follows. In Section II the

concept of Runtime Testability is introduced. In Section III,

a method to improve runtime testability of a system is

described. Section IV evaluates the proposed method. In

Section V related work is presented and compared to our

research. Section VI wraps up the paper and introduces some

ideas for further research.

II. RUNTIME TESTABILITY

The fact that there is interference through runtime testing

requires an indicator of the extent to which the running

system can be tested without affecting its functionality or

its environment. The standard definition of testability by the

IEEE [10] can be rephrased to reflect this requirement, as

follows:

Definition 1: Runtime Testability is (1) the degree to

which a system or a component facilitates runtime testing

without being affected; (2) the specification of which tests

are allowed to be performed during runtime without affect-

ing the running system.

Appropriate measurement and improvement methods for the

first point should rely on general information about the

system, independent of the nature of the runtime tests that
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may be performed, whereas measurement and improvement

methods for the second point should rely on dynamic

information about the concrete test cases that are going to

be performed as well. In this paper we will specifically

concentrate on the first (system-centric) aspect of runtime

testability, by using a model that captures the runtime

architecture of the system right at the moment when tests

will be executed.

Runtime testability is significantly influenced by test
sensitivity [4]. Test sensitivity characterises which features

of the system will cause interference between the running

system and the test operations, e.g., a component having

internal state, a component’s internal/external interactions,

or resource limitations.

A. Runtime Testability Measurement

Ultimately, components affected by sensitivity factors will

impede runtime testing of certain features or requirements,

increasing the probability of leaving undetected faults. The

Runtime Testability Measurement (RTM) was defined in [4],

as the quotient between the number of features of the system

which can be runtime tested without interfering with the

system, and the total number of features, i.e., as expressed

by a test adequacy criterion:

RTM =
|Cr|
|C| (1)

where C is the complete set of features which have to be

tested, and Cr is the subset of those features which can be

tested without interference.

In this paper, the value of RTM is calculated for an

instantiation of Equation 1 for component-based systems,

based on a runtime dependency graph model annotated with

runtime testability information, that captures the runtime

architecture of the dynamic system at the moment of testing,

known as Component Interaction Graph (CIG) [11].

A CIG is defined as a directed graph CIG = (V,E). The

vertex set, V = VP∪VR, is formed by the union of the sets of

provided and required vertices, where each vertex represents

an operation either provided or required by a certain compo-

nent’s interface. Edges in E account for two situations: (1)

provided operations of a component that depend on required

operations of that same component (intra-component); and

(2) required operations of a component bound to the actual

provider of that service (inter-component).

Vertices in the CIG are annotated with a testability flag,

τi, which represents whether using the operation the vertex

symbolises during a test will cause interferences or not. In

Section III, more details are given on how to derive the sets

of vertices, edges and testability annotations.

This runtime dependency graph abstraction is detailed

enough to link key runtime testability issues to the individual

operations of components that cause them, and, on the other

hand, it is simple enough so that its derivation from the

component’s design and the system’s runtime architecture is

an easy task, and its computation is a tractable problem.

The runtime testability measurements proposed in [4]

provides an estimate of the impact on the reliability that

runtime testing will have on a system. Knowledge of this

impact will allow selecting test isolation techniques to

be implemented by engineers into specific components to

counter their test sensitivity. Examples of these techniques

are state duplication, component cloning, usage of simulators

and resource monitoring [1], [4].

III. RITMO: A METHOD TO IMPROVE RUNTIME

TESTABILITY

In this Section we introduce RiTMO (RuntIme Testability
Measurement and Optimisation), a method for improving the

runtime testability of a given system based on RTM. This

method helps developers in elaborating an implementation

plan, identifying parts of a system where an effort has to be

invested in the implementation of test isolation measures, in

order to maximise the RTM for a given budget. It can also

be used to compute the minimal budget required to reach a

target RTM.

Typical usage scenarios are the deployment or the update

of systems with high availability and reliability require-

ments during run-time. In order to allow good runtime test

adequacy, integration engineers aim for a high RTM. By

combining component design information with the system’s

architecture, the system integrator uses RiTMO in order to

determine where the budget is best spent in order to increase

runtime testability.

Figure 1 depicts the five main steps which compose

the RiTMO method, associated to the engineering roles in

charge of performing the task. It must be noted that a single

person can have multiple roles. This figure is complemented

by Table I, in which details on the inputs and outputs of each

activity are provided. The first step consists in analysing

the dependencies between each part of the system. The

second step aims at determining which operations cannot

be tested at runtime. At this point, the RTM of the system

in its current implementation can be computed. The third

step determines the cost of applying an adequate isolation

technique to each of the untestable operations. The fourth

step uses our algorithm to obtain the optimal action plan

for increasing the RTM. The fifth and final step consists

in applying this action plan to effectively obtain a more

runtime testable system. Each of these steps is described

in the following subsections in more detail.

A. Step 1: Architecture Analysis

In order to compute the RTM of a system, the first step is

to provide a view of the runtime architecture of the system at

the right level of granularity, by means of a CIG as depicted

in Figure 2.
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Figure 1. Complete workflow of RiTMO.

Activity Actors Inputs Outputs
Architecture analysis Integration Engineer Component designs

Bindings
CIG

Impact analysis Integration Engineer
Analyst

CIG
Domain knowledge
Design knowledge

Untestable vertices
Initial RTM value

Cost estimation Test Engineer CIG
Untestable vertices
Component designs
Isolation techniques

Vertex fix proposal
Vertex fix costs

Action planning Test Engineer CIG
Untestable vertices
Vertex fix costs
Target Budget or RTM

Action plan
Estimated cost
Estimated RTM value

Implementation Developer Action plan
Vertex fix proposal

Test support code

Table I
ACTORS, INPUTS AND OUTPUTS OF EACH ACTIVITY INVOLVED IN RITMO.

Vertices in the CIG are obtained by inspecting the re-

quired and provided interfaces of each component. For each

method of each interface, a vertex is created. Vertices for

unused operations are removed as they would add unreach-

able paths. Composite components are treated in a similar

way: vertices are added for each of the operations in their

interfaces.

Edges are obtained in two steps. First, internal edges

representing dependencies between provided and required

operations inside components have to be derived. If models

are available and detailed enough, internal edges can be

derived from a component’s model. Otherwise, internal

edges can be either derived by static analysis of the compo-

nent’s implementation or, if not available either, by dynamic

analysis of the component running on the actual system [12].

Secondly, the CIGs of each component instance are com-

posed, by adding edges from required to provided oper-

ations, which can be directly obtained from the runtime

bindings between the component instances in the system.

For each connection of a required interface to a provided

interface, an edge is added between the corresponding

vertices. Similarly, all delegation dependencies between an

interface of a composite component and the interface of the

subcomponent in which it delegates, are also represented as

edges.

Figure 2. From components to CIG.

B. Step 2: Impact Analysis and RTM

The goal of this step is to annotate the just obtained

CIG with the test impact flag τi. The derivation of this

information cannot be easily automated, and it is up to the

integration engineers and analysts to apply their design and
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domain knowledge for deciding which method calls could

disrupt the normal operation of the system.

In case the system is large, inspecting each component

for runtime test sensitivity factors can be a laborious task.

However, it can be greatly simplified if component vendors

associate this information to components, as it is easily

reusable.

The value of RTM is computed as described in [4]. If

this value is higher than the target adequacy criteria for the

system tests, the system is sufficiently runtime testable and

the method finishes. If this is not the case, improvements on

the system must be performed.

C. Step 3: Cost Estimation

The third step of the RiTMO method consists in comple-

menting the graph of the system with an estimation of the

effort needed for the implementation of countermeasures to

allow testing a certain untestable vertex. For each vertex

marked with a τ = 0, a cost, ci, which represents the

estimated cost of implementing a suitable test isolation

measure. Typically, the cost is expressed in terms of time

(e.g., man-hours) or money.

Untestable operations are assessed by combining know-

ledge of the possible test isolation measures countermeasures

(e.g., state duplication, cloning, simulation) with knowledge

about the developer team capabilities, in order to obtain an

estimation of the implementation effort.

D. Step 4: Computation of Implementation Plan

The completely annotated CIG contains information about

the untestable methods and the cost to make them testable.

It is then possible to compute a plan automatically for the

implementation of the isolation measures in the components

that will yield the optimal RTM given a maximum budget.

Conversely, it is also possible to compute a plan with the

minimal cost to reach a fixed RTM.

A general exhaustive search algorithm is not applicable

in practice to systems of realistic size due to its exponential

complexity. This complexity can be tackled with a heuristic

near-optimal algorithm [13]. The resulting implementation

plan consists of the list of operations to address, the chosen

isolation technique, and the final expected RTM value.

E. Step 5: Application of the Plan

The last step of the method consists in following the

implementation plan by implementing the isolation measures

for each of the operations selected by the algorithm. Once

this step is complete, the final deliverables of the method

are ready and can be applied to the system’s components.

The test process can then begin.

IV. APPLICATION EXAMPLE

In this section we will describe an application example

of RiTMO to a component-based subsystem taken from our

industrial case study.

A. System Setup and Architecture

The system used in our integration experiment is a vessel

tracking system taken from our industrial case study, code-

named AISPlot. It is part of a component-based system from

the maritime safety and security domain. The architecture of

the AISPlot system is shown in Figure 3.

The system is used to track the position of ships sailing

a coastal area, detecting and managing potential dangerous

situations. Position messages are broadcast through radio

by ships (represented in our experiment by the World
component), and received by a number of base stations

(BS components) spread along the coast. If a message

received from the simulator belongs to the area the base

is covering, it is relayed to the Merger component through

the AISin interface. Merger removes duplicates (some

base stations cover overlapping areas), and offers a sub-

scription service to client components for receiving updates

on the status of vessels. Merger offers the Csubscribe
and Cunsubscribe to components interested in receiving

these updates. Clients then have to support four oper-

ations for notification of ship status: Cnew, Cpublish,

Creply and Cdispose. Monitor scans all the received

messages in search for inconsistencies in the data sent by the

ships. Visual draws the position of all ships on a screen

in the control centre, and also the warnings generated by the

Monitor component, via the Warning operation.

AISPlot is implemented in Java, on the ATLAS/FRACTAL

runtime integration and testing research platform [2]. It is

a dynamic, reflective component-based platform that allows

the insertion, modification, removal and testing of compo-

nents at run-time.

B. Application of RiTMO

1) Architecture analysis: To derive the internal edges,

the call hierarchy functionality of Netbeans1 was used,

automatically deriving a call tree of each of the public

operations in the implemented interfaces of each component,

and locate calls to methods of required interfaces.

Because of the reflective capabilities of ATLAS/FRACTAL,

the derivation of the set of required and provided operations

into vertices, and the creation of the external edges were a

straightforward and completely automated process. Figure 3

shows the reconstructed view of the system’s runtime ar-

chitecture (components and runtime bindings) obtained by

querying the reflection interfaces provided by FRACTAL.

During the system deployment, the management console

of ATLAS/FRACTAL automatically composes all the CIGs

of the primitive components to obtain the complete CIG of

AISPlot, which can be seen in Figure 4.

2) Impact analysis: The World and BS components

are stateless and have no interaction outside the system’s

1http://www.netbeans.org
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Figure 3. Runtime-reconstructed Architecture

Figure 4. AISPlot CIG during impact analysis

boundaries. Therefore, no impact is caused by invoking their

operations during a test.

On the other hand, Merger and Monitor are state-

ful components, as both of them store tables of received

messages and vessel information internally. This informa-

tion will be altered by test operations, and therefore these

components are test sensitive. The merger component has to

manage vessel subscriptions from clients as well. Because

the set of subscribed ships will be altered during testing, this

is also a source of test sensitivity.

The visualiser component stores internally a list of ob-

served vessels (ships to which it has subscribed in Merger),

which is already a source of test sensitivity. Moreover, the vi-

sualiser component is interacting with a real display through

a socket connection. This interaction must be isolated in

some way so that users of the system do not see the test

vessels and warnings drawn on the display.

The preliminary value of RTM can be seen in the before
row of Table II. Due to the pipelined nature of the system,

all the operations preceding the untestable ones will be

indirectly untestable, and only a very low number of vertices

will remain testable: those which are not related to the main

pipeline path, hence the extremely low RTM values.

3) Cost estimation and planning: Given our previous

knowledge in implementing a set of analogous measures for

a system with components of similar characteristics, the cost

of implementing test support for the untestable operations in

Merger and Monitor was estimated to be approximately

0.5 man-hours, and the implementation of the isolation and

observation code for each operation in Visual would have

Total Testable RTM
Before 86 4 0.046
After 86 77 0.895
Plan 13,15,16,33,35,36,42,54,58
Cost 10.5 man-hours

Table II
RTM RESULTS OF THE IMPACT ANALYSIS AND IMPROVEMENT PLAN

vi Operation Sensitivity Isolation Cost
13 monitor.Cnew state separate state 0.5
14 monitor.Creply state separate state 0.5
15 monitor.Cpublish state separate state 0.5
16 monitor.Cdispose state separate state 0.5
33 visual.Cnew state, interaction separate, redirect 2
34 visual.Creply state, interaction separate, redirect 2
35 visual.Cpublish state, interaction separate, redirect 2
36 visual.Cdispose state, interaction separate, redirect 2
42 visual.Warning interaction redirect output 2
54 merger.MessageIn state separate state 0.5
58 merger.Csubscribe state separate state 0.5
59 merger.Cunsubscribe state separate state 0.5

Table III
UNTESTABLE OPERATIONS IN AISPLOT

an estimated cost of 2 man-hours. Table III summarises all

the test sensitive operations in each component, along with

suitable isolation techniques and their estimated costs.

Figure 5 shows the RTM as a function of the cost

spent developing test support artefacts, as calculated by

our testability optimisation tool. Because of the pipelined

architecture of the system, all the untestable vertices in the

pipeline have to be fixed to obtain a substantial improvement

of testability. This can be seen on the big jump in testability

in Figure 5 when 10.5 man-hours are dedicated to testability

improvement. Without the information in the plot, it would

have been difficult to find this issue.

Figure 5. Evolution of RTM as the plan progresses

The after row in Table II shows the final value for the

RTM of the system once all the countermeasures have been

applied to the untestable vertices, along with the vertices

which are part of the plan.
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C. Discussion
There are number of issues that have to be considered

concerning the applicability of the method. First, it must

be taken into account that the quality of the plan depends

greatly on the quality of the predicted costs. Care should be

taken in obtaining a development cost estimation model to

obtain realistic (and therefore, useful) improvement plans.

Second, as a system can have a very large number of com-

ponents and vertices, a (semi-)automatic tool that supports

all the steps of RiTMO is needed. Although Figures 3

and 4 show our preliminary implementation work, it is in

a very early stage, especially with respect to finding the

components that contain test sensitive features, which still

has to be done manually. Finally, for better cost estimation,

the process for defining isolation costs could be refined to

allow dependencies between vertex fixes, as often several

operations of a component have to be fixed as a whole.

V. RELATED WORK

Our approach to runtime testability, presented in [4], and

complemented with the definition of RiTMO in this paper is

influenced by the work presented in [1], where the concepts

of test sensitivity and test isolation are introduced. How-

ever, no mention of, or relation to the concept of runtime

testability are done. A method based on a measurement of

testability, from the point of view the static structure of

the system is presented in [8] to assess the maintainability

of the system. Our approach is similar in that runtime

testability is influenced by the architecture of the system

under consideration, although during runtime instead of

during compilation time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented RiTMO, a cost-driven

method for the improvement of runtime testability based

on RTM, a measurement for the runtime testability of a

component-based system based solely on characteristics of

the system under test. RiTMO enables integration engineers

to identify critical situations of bad system runtime testabil-

ity and to compute and execute an implementation plan to

improve it. Future work will focus on the improvement of

the RTM measurement itself, as well as the development of

automated or semi-automated methods for performing the

impact analysis and fix cost estimation, and the support

of RiTMO by a CASE tool. Finally, additional empirical

evaluation using industrial cases and synthetic systems is

planned, in order to explore further the relationship between

RTM and defect coverage and reliability.
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