Architecture Support for Runtime Integration and Verification of
Component-based Systems of Systems

Alberto Gonzalez

Eric Piel

Hans-Gerhard Gross

Delft University of Technology, Software Engineering Research Group
Mekelweg 4, 2628 CD Delft, The Netherlands

E-mail:

Abstract

Systems-of-Systems (SoS) represent a novel kind of sys-
tem, for which runtime evolution is a key requirement, as
components join and leave during runtime. Current compo-
nent integration and verification techniques are not enough
in such a dynamic environment. In this paper we present
ATLAS, an architectural framework that enables the run-
time integration and verification of a system, based on the
built-in test paradigm. ATLAS augments components with
two specific interfaces to add and remove tests, and to pro-
vide adequate testability features to run these tests. To illus-
trate our approach, we present a case study of a dynamic
reconfiguration scenario of components, in the Maritime
Safety and Security domain, using our implementation of
ATLAS for the Fractal component model. We demonstrate
that built-in testing can be extended beyond development-
time component integration testing, to support runtime re-
configuration and verification of component-based systems.

1. Introduction

The commission of the European communities has recently
pushed for the establishment of a European Network for
Maritime Surveillance [6]. Such a network will provide safe
and secure usage of the seas around Europe, providing bor-
der control, law enforcement assistance, and detection of
maritime pollution, and illegal activities. This will need the
cooperation and coordination between the concerned Mem-
ber States’ security agencies, and an efficient usage and in-
tegration of already existing systems.

This new kind of large-scale component-based system,
in which the components have an operational entity of their
own, and usually a managerial entity as well, is known as
“System-of-Systems” (SoS) [14]. SoS present considerable
engineering challenges that have been acknowledged by the

{a.gonzalezsanchez,e.a.b.piel,h.g.gross}@tudelft.nl

Dutch Embedded Systems Institute and Thales Nederland.
They have set up the Poseidon research project [5], commit-
ted to devising engineering best practices for developing,
integrating and deploying such maritime safety and security
(MSS) systems. Current approaches for system integration
and testing are mainly static, inappropriate for the highly
dynamic nature of MSS SoS, where components join and
leave, and where even the system’s requirements evolve at
runtime.

In this paper we present an architectural framework,
called ATLAS, based on the paradigm of Built-In Testing [8]
(BIT). ATLAS allows the SoS integrator to add and re-
move test cases from components at runtime, and whenever
an architectural change happens, inform all the potentially
affected components that their execution context must be
rechecked. We have implemented ATLAS over Fractal [3], a
component model with dynamic, introspective capabilities.
To realize ATLAS’ distinguishing, dynamic features, we ex-
tend the Fractal component model with two extra compo-
nent interfaces. Furthermore, we have created an adapter to
run integration tests written for JUnit in the ATLAS frame-
work, so that runtime test cases can be easily defined. To
illustrate our approach, we present a case study based on
the context of MSS systems, demonstrating and assessing
how well runtime testing can be performed during dynamic
reconfiguration, i.e. joining and leaving of components.

The paper is structured as follows. In Section 2 we study
the challenges of SoS. Section 3 outlines relevant related
work to our research. Section 4 introduces and describes
ATLAS, and its implementation. Section 5 illustrates how
ATLAS is used in a current MSS implementation, discussing
the initial solution and its limitations. Finally, section 6
summarizes and concludes the paper.

2. The Challenges of MSS Systems

Runtime integration and verification strategies are
amongst the most obvious challenges in building and evolv-

ing large-scale MSS SoS, given the large number of differ-
ent systems contributing to them. Most sub-systems in an
SoS have operational and managerial independence [7, 14].
This implies that parts of the SoS may be changed without
the SoS integrator having too much to say in the decision.
In some cases, a sub-system might not even provide detailed
information about the modification (due to political or busi-
ness reasons). Even in such cases, the integrity of the entire
SoS must still be guaranteed.

The fact that MSS SoS evolve dynamically during op-
eration time also brings implications for quality assurance,
in particular for testing. Systems can join or leave the SoS,
meaning that offered services may vary in terms of func-
tionality, as well as quality. When a sub-system joins or
leaves the SoS, the other sub-systems may have to be re-
configured to take advantage of new services and improved
quality of service, or they may have to be notified that ser-
vices are degraded. This process should be mostly seamless
for the system operators and should be executed within a
short time, without any major disruption of the rest of the
SoS.

The tests used to verify the system have to evolve simul-
taneously as the SoS evolves. In particular, functionalities of
a component which were not exercised in the initial config-
uration of the SoS may be required by components inserted
at runtime. These functionalities have to be tested before
being used, even though no tests were originally provided
to verify them. Moreover, when a new version of a compo-
nent is created to fix a misbehaviour, tests to detect the mis-
behaviour might be introduced at the same time to ensure
no regression happens in the future. Verification techniques
need not to be restricted to testing, nor to a fixed set of tech-
niques. Therefore, the platform must support different types
of verification techniques (static contracts, monitoring of re-
sources, etc.), and dynamic insertion and removal of these,
in the same way it supports joining and leaving of compo-
nents.

By their very nature, SoS are large-scale systems, with a
large number of components, contained in the sub-systems.
After each reconfiguration, the integration of the SoS has
to be verified again. It is, therefore, necessary to devise
an appropriate verification strategy that not only achieves
this goal, but also minimizes the cost of checking after each
modification. Re-checking must be as little disruptive as
possible for the running configuration and the latency be-
tween the moment a reconfiguration is requested and the
moment it is accepted and deployed must be minimal.

Due to the huge size of the SoS, the limited access to
the system’s code or executables, the need to keep SoS al-
ways available, or the fact that some components use re-
sources that cannot be duplicated, (a) testing will have to be
executed concurrently with the working configuration, and
(b) some component instances will be shared between the

tested and the working configurations. Therefore, runtime
testing [19], the ability to test a component while it is also
performing normal work, is the only realistic option when
verifying an MSS SoS at operation time.

3. Related Work

To our best knowledge, there is no visible research be-
ing carried out specifically addressing the domain of MSS
Systems-of-Systems. However, there has been an active re-
search community addressing the main topics of interest
related to integrating and verifying component-based sys-
tems, since the publication of Weyuker’s landmark article
on component testing [20].

Built-In Testing is an important paradigm, key in under-
standing our approach in the following sections. BIT refers
to any technique used for equipping components with the
ability to check their execution environment, and their abil-
ity to be checked by their execution environment [8], dur-
ing runtime. These built-in tests may be invoked before
deployment when a system is assembled, or during sys-
tem updates, when existing components are replaced or new
components added, so that the pair-wise client-server rela-
tions can be assessed. That way, the components can per-
form much of the required system verification effort auto-
matically and by “themselves” [2]. This distribution of the
responsibility of verifying the component’s environment to
the components themselves is very interesting for MSS SoS.
It can help us to maintain the independence of each of the
participating systems.

Having components carry information useful for verify-
ing the context they are being deployed in, has already been
proposed [4, 9, 16], and has been extended to perform this
verification at runtime [18]. However, these approaches are
static, and do not allow for redefinition or evolution of the
tests if required, or are mostly focused on monitoring. With
ATLAS, we tackle the dynamic evolution of test cases, and
the verification of these on the running system. Moreover,
although the main focus of our contribution is to be able to
detect integration problems between a component and the
other components before it is used in the system, ATLAS
can also accommodate monitoring, as it is an integral part
of the integration verification process.

In the line of dedicated infrastructure to automate inte-
gration testing, research work has also been demonstrated
before [1, 12].

4. The ATLAS Framework

In order to address the challenges of run-time integra-
tion of verification presented in Section 2, we have devised
the ATLAS component verification framework. Before test-
ing the integration of a SoS, it is necessary, first, to be able

to test the integration of two components together. There-
fore, the basis of ATLAS is that interacting components will
check their peers for proper for integration. Each compo-
nent in ATLAS has a set of test cases associated with it for
this purpose.

This technique, we call it provider acceptance, applies
the principles of built-in testing, according to [8]. More
specifically, we assume that every component in our system
provides two additional built-in interfaces that are used for
verification purposes:

e A Testing Interface through which the necessary
functions are provided for manipulating a component
under test.

e An Acceptance Interface through which test cases
can be listed, managed and their results invalidated for
a particular component. This interface is an extension
of traditional BIT [8].

4.1. Artefacts of Atlas

As defined in BIT, components have a Testing
port that offers functionality for querying and exer-
cising a component’s testability features through the
TestingController interface [8]. This is required, es-
pecially, in the context of runtime testing, where the com-
ponent must be tested for a future configuration, at the
same time as it continues to operate in its current con-
figuration. However, in ATLAS, the tests are not perma-
nently built into the components. Components in the AT-
LAS framework also provide an Acceptance port with an
AcceptanceController that offers enhanced capabil-
ities over BIT. The acceptance controller has two roles,
(a) dynamic addition and removal of the tests that the com-
ponent will use to verify the context it is deployed in, and
(b) receiving notifications informing that a part of the archi-
tecture has been changed and needs re-checking. Figure 1
shows the basic UML representation of an ATLAS compo-
nent, with a port for testing and a port for acceptance. The
normal service ports and interfaces (i.e. the component’s
proper functionality) are component-dependant. They are
labelled Provided and Required.

AtlasComponent E
TestingController Testing

AcceptanceController Acceptance

Figure 1. A generic UML Atlas component

In order to make the definition of tests as flexible and
generic as possible, ATLAS also defines the concept of Ac-

ceptance Providers: special components dedicated to test-
ing other components. Each acceptance provider is avail-
able for all the components in the system, and it is targeted
to one specific type of test (e.g. JUnit, TTCN-3). What ex-
actly an acceptance provider can test, depends on the tech-
nology it relies on. It can be designed to test functional
(the outputs generated from specific inputs), as well as non-
functional (e.g.: execution time, memory usage) properties.

The generic UML representation of an acceptance
provider and test component is depicted in Figure 2. The
testing port interface, is used for set up and clean up tasks
in the component under test. The Provider port is de-
signed to be accessed by the framework components that
issue the tests. In our current implementation this is the
task of the Management Console. No assumption is made
neither about the way the provider and test components in-
teract, nor how test components look like. In the figure we
show a test component that provides and requires the same
interfaces as the ATLAS component that requires this test
(e.g. AtlasComponent in Fig. 1), and “impersonates”
the component during testing. This corresponds to the way
in which tests in the example in Section 5 are designed.

AcceptanceProvider I}

AtlasProvider Provider Testing TestingController

'
v <<create>>

TestComponent E

Figure 2. Atlas Provider in UML

The usual usage scenario starts after a reconfiguration,
with a component that needs to check the components on
which it depends. The system integrator will see this, and
use the Management Console to issue requests to the appro-
priate acceptance providers. The providers will create the
corresponding test component, set up the test environment,
fire the test case, and collect the results when this has fin-
ished.

The tests run by acceptance providers can be hand-coded
specifically for one component, or generated from compo-
nent models and specifications. It is also possible to write
or generate the tests in a notation dedicated to testing, such
as TTCN-3 or the UML Testing Profile, and then have a
generic tester component read these specifications and run
the tests [10].

4.2. Interface Specifications

The most important extension of BIT in the ATLAS
framework is the AcceptanceController interface. It
defines three operations to query, add and remove test cases.

Associated to this interface definition are descriptions of
test cases that have to be run when something changes. The
descriptions contain information about what test component
to use, results of past runs, and whether the test is pending,
i.e. it has to be tested again or not.

It further defines two other operations: isAccepted
and notifyChange. The first one returns true if no test
case is pending, and all of them have passed in their last
run. Calling the second operation informs the component
that there has been a change in its context. A call to this
operation invalidates all the test cases’ results, setting them
as pending.

The At lasProvider interface is much simpler. It has
only one operation: check, that receives as parameters the
test case to be checked (which is provider-dependent), and
the component that issues the test request (so that its context
can be passed to the test component).

The TestingController provides a number of op-
erations to let a component be aware of the testing process,
so that testing does not interfere with the normal working
of the component. In particular, it permits the component to
tell whether a call originates from the working or the testing
configuration. It also provides operations such as begin
and end for setup and cleanup of the component’s internal
state.

4.3. Implementation in Fractal

An implementation of the ATLAS framework specifica-
tion has been developed based on the Fractal component
model [3]. Instead of implementing the acceptance and
testability features directly as interfaces in the functional
components, we have exploited the possibility to wrap com-
ponents using “component membranes” offered by Fractal.
Membranes encase components, adding special controller
objects that can be used to manage infrastructural aspects
of a component, such as binding, content and life cycle.
Membranes provide a convenient way of adding our spe-
cial ports to the Fractal component platform, so that com-
ponent developers do not have to care about these additional
aspects, consequently enabling a more clear separation be-
tween functionality and testability.

The current implementation of ATLAS takes into account
the set of architectural modifications descbired in [17], to
trigger notifications. This has been achieved by program-
ming an extension of the behaviour of the standard Frac-
tal Binding and Content controllers [3], so that they call
notifyChange.

Currently, to keep the implementation simple, the com-
ponent framework only allows modifications of the archi-
tecture if the components are in sfopped state (paused).
Therefore, to ensure all tests have passed in the current
implementation, we do not allow components to transition

to started state unless all of their associated test cases are
marked as passed.

In this paper, we focus on devising and validating the ar-
chitecture of ATLAS. The testing port of the ATLAS model,
used to make the component test-aware during runtime test-
ing, has not yet been fully implemented. For now, the com-
ponents under test are duplicated by the acceptance provider
so that the tests do not disrupt the working configuration.
It should be possible to provide a user interface which dis-
plays in parallel the current production version and the mod-
ified version which still has to be fully validated.

ADL Extension. In order to allow an easy association of
components to test cases, we extended Fractal’s Architec-
tural Description Language (ADL) parser to permit the as-
sociation of test cases to components in a convenient way.
Each of these associations is defined as an additional item
in the component’s ADL definition. An example of a com-
ponent’s description and associated test cases is presented
in Listing 1. It shows how to associate test cases (the
test tag), indicating which test infrastructure has to be
used (the provider attribute) and which test definition
has to be loaded by the provider (the definition at-
tribute) In this example we are using an tester component
called MonitorTest, which is supported by the JUnit ac-
ceptance provider explained in the following Section.

<definition name="Visualiser">
<interface name="monitor" role="client"
signature="AISMonitor" />
<test provider="JUnit"
definition="DupTest" />
<test provider="JUnit"
definition="MonitorTest" />
<content class="Visualiser" />
</definition>

Listing 1. Associating of test cases in the
ADL file

JUnit Provider. JUnit! is a well-known and widely sup-
ported testing framework. We have implemented an accep-
tance provider based on it, that adapts the way test cases are
normally written for it. This adapts the way in which tests
are run in JUnit, to the requirements of runtime integration
testing.

Traditional JUnit tests are different in comparison with
integration tests, in that they have to create their own test
system, whereas in runtime testing, the test system is al-
ready running. Hence, a new type of test case was defined,
that is able to access the running system. Note that, in the

"http://www. junit.org

Atlas Actions Roles

1ol x| e =T

|0
£ companents Acceptance Requirements
£ i vics
B+ (® companents
-3 monkt
- @@@ acceptance
R ToT+] budelft.
OOOUEIEH | stars: passed
Fiter
visual nl.tudelft.atlas.junic.JUnicProvider (251.poseidon.ais.aismonicor.
replay
FilterCases)
All 1 test cases passed! :-D
KT |
il Eudelft, atias.junt, 3L

(a) Management console

(b) AIS Visualiser screen

Figure 3. Screen captures of the Management Console and the example system interface.

current implementation, the system they access is a copy
of the original one, created by the provider. By simulating
how the component would use its context, the JUnit test is
then able to do integration testing. The results obtained can
be further analysed by tools cooperating with JUnit such as
IBM’s Eclipse 2.

Management Console. Finally, in order to provide a
graphical overview of the acceptance status for all the com-
ponents of the system, we have extended the Fractal man-
agement console to support querying the acceptance con-
troller interface, and interpreting test results from JUnit.
Our tool also provides a way to access all the aspects that
are not yet automated, like instantiating the acceptance
providers, querying the acceptance controllers and starting
tests. The management console is shown in Figure 3a. In
the left pane, the acceptance status of each component is
displayed. A detailed report of the selected test case is
shown on the right hand side pane. How the console is
used during testing, is depicted in Figures 4b and 5, and
explained in the next Section.

5. Case Study: Join and Leave of AIS Monitors

To demonstrate the process of integration testing and to
validate our proposal on a realistic scenario, we will present
an experiment with a sub-system component leaving the
MSS SoS and a new one joining it. This scenario repre-
sents a system re-configuration during operation. We show
the integration and verification procedure and the artefacts
to be provided by the framework in order to be able to per-
form the modification of the system at runtime. This exper-
iment focuses on the integration verification of one given
component in a new context.

’http://www.eclipse.org

5.1. AIS: Automatic Identification System

The Automatic Identification System (AIS) is a world-
wide adopted International Telecommunication Union stan-
dard used for vessel identification [13]. Ships broadcast
over radio information about their status and position with
a variable report rate that depends on various parameters of
the ship. Several AIS base stations are distributed along the
coast of The Netherlands. The messages received by these
stations are then relayed to the coast authority, who can then
use the data for traffic control, collision avoidance, and as-
sistance. One particular automated task is the monitoring
of the messages to identify ships with a malfunctioning AIS
transponder, or ships whose captain has forgotten to cor-
rectly adjust the transmitted information.

For our experiment, we will use a simulator which re-
plays a dump of a week’s worth of AIS data covering the
whole coast of The Netherlands. Because AIS messages are
broadcast and can be received by many base stations, dupli-
cates of the same message will be received. Our recorded
data is no exception to this.

5.2. Case Study

In our experiments we used an example system com-
posed initially of three components, shown in Figure 4a.
It comprises a replayer component, a visualiser component
and an AIS conformance monitor. The visualiser receives
AIS data coming from the base stations through the AIS
Base port, and draws the position of the ships on screen. It
has an additional Monitor port for connecting a monitor-
ing component that detects anomalies in the AIS messages.
Anomalies in the AIS data will be displayed on the map as
a warning message next to the ship. The anomalies being
watched are of two kinds: inconsistencies in the data, and
incorrect transmission rates of the AIS messages. Figure 3b
shows what an operator would see in the control room.

(a) Initial configuration

AIS Visualiser I}

Mon1Test ™
] DupTest
Acceptance
Monitor

Replayer I}

Source

AlS Base

Mon. 1

=

Monitor

AcceptanceController [A1g visualiser &

Replayer I}

AlS Base Source

Mon2Test'

Replaced tests 1

AIS Visualiser I}

NAIS Base
[~ [Mon2Test
| DupTest

Acceptance
Monitor

Replayer E

Source

Filter I} Mon. ZI}

In Out Monitor

Manager =

Y y
Filter E Mon. ZE

In Out Monitor

(c) Final configuration

(b) Test context during verification

Figure 4. Component diagram before, during, and after the replacement of the monitor.

5.2.1 Initial Deployment

Using the ATLAS management console (shown in Fig-
ure 3a), the three initial system components are instantiated.
Two test cases are associated with the visualiser via the ac-
ceptance interface, as can be seen in the UML 2.0 diagram
note in Figure 4a. The first one checks that when the AIS
stream contains no duplicates, the right warnings are gener-
ated; the second one checks that the monitor can correctly
handle duplicate messages.

Before initiating the system operation by starting every
component, both test cases have to be executed. As both
tests have been successfully executed, the system is allowed
to start. Should a test fail, it is still the architect’s respon-
sibility to decide what actions to take to solve the situation.
A scenario of this situation is described in Section 5.2.2.

5.2.2 Rejected Modification

The first version of the monitor had been developed to check
strict compliance to the AIS standard. However, in practice,
the monitor overwhelms the visualiser with too many warn-
ings, rendering it useless for the operator. This comes as
the result of the combination of a number of factors, that in-
clude skewed timing information caused by delays in the re-
laying between the base stations and the central coastguard
facilities, and AIS transponder misuses and abuses by the
ship’s captains [11]. In this case, we cannot make the rest
of the system adapt to the component since we have no au-
thority over ships, nor the AIS relay network. Instead, we
decide to replace the monitor by a more relaxed one, that
only reports in case of a clear violation of the AIS regula-
tions. This represents a runtime evolution of the system.
Because the expectations on the warnings generated by
the monitor change, the test cases have to change accord-
ingly. Therefore, the first test suite is removed, and a new,
adapted one is inserted using the acceptance controller of
visualiser. Replacing the first monitor by the second mon-
itor causes the acceptance interface of the visualiser to re-

ceive the not i fyChange call, which invalidates the test
case’s results. If we want to start the components again,
we must re-check them. Unfortunately, when they were
checked again, the second test case was not satisfied, be-
cause the new monitor does not handle duplicates correctly.
As pointed out in Section 5.2.1, a decision must be made
on which part of the system should be adapted. In this case,
inserting a new component to perform the missing function-
ality, as seen in Section 5.2.3.

Due to space constraints, this intermediate configuration
is not shown in Figure 4. A sequence diagram showing
the interactions during the testing process can be seen in
Figure 5. As noted on Section 4, the Management Con-
sole queries the acceptance interface of the component, cre-
ates the corresponding provider and requests the test to be
checked. When the check finishes, the result of the test is
stored back in the component. This is done in a completely
automated way.

5.2.3 Accepted Modification

In order to solve the component rejection problem, the du-
plicate filtering functionality of the first monitor was ex-
tracted as a separate component, and added as a preprocess-
ing component before the monitor. This invalidates the test
case’s results in the visualiser once more (although one of
them was already invalid as it failed in the previous config-
uration).

After this change, the testing process is run again. Fig-
ure 4b shows the relationship between the manager and the
acceptance controller of the visualiser, as well as the testing
context set up by the provider during the testing process. It
depicts the current status of the implementation, in which
the testing context is replicated for each test case. In this
case, both test cases are satisfied. The modification is there-
fore accepted and the operation of the system is allowed to
resume under this third configuration. The final configura-
tion of the system corresponds to the one in Figure 4c.

| :Manager Igut:VisualisegI }Reguirement | :Provider | :Test | | :Monitor2 |
| | | | |
' . . '
~ getRequirements(): ' ' ' '
< mmmmmm e ; H H
H H
loop] [for each] | \ ' | '
' getProvider()_: H '
R ERCREES demmnn e : : :
def = getDefinition()_ 1 H 1 H
' ' '
SRR R LR EEEE LR T H duplication H H
N N <<create>>_! of context H H
'
: result = check(cut, def) 1 S 1| invoking !
T T K 1 | test methods H
' ' , ' '
H H N)/ <<create>>_! / H
provider _,'—>|j K '
dependent . T . H
N . v <<create>>_,
' ' 0
'
setResult(result) ' ' '
SRR LT B R

T ' '
' '

Figure 5. Sequence diagram of the test process in the current implementation.

5.3. Evaluation

The experiments performed must be regarded as a proof
of concept. Although they are simple, they demonstrate the
usability of our proposed process to verify the integration
of a given component into a specific context, made of other
components. Each component can have a set of cases eas-
ily associated with it, and those can be automatically man-
aged by the same platform that manages the component in-
tegration. The framework also handles the initialisation of
the system under test, which simplifies the definition of test
cases, focusing on the test scenario. Still, there are plenty
of issues that need further attention, especially with regard
to runtime testing and scaling our approach to a complex
system.

We have shown how ATLAS and its extension of the BIT
paradigm provide a base to automate the runtime integration
and verification of an entire component-based MSS System-
of-Systems. Still, the creation of the test cases, is not auto-
mated.

An advantage of this approach, as shown in the second
experiment, is that the acceptance interface allows us not
only to query and check the required tests at instantiation
of a component, but also to replace them, as it is in the
case of the second experiment. The acceptance controller
can be used to add new test cases or remove obsolete ones
during the execution of the system, therefore making sure
the SoS requirements are able to evolve and change during
runtime. The implementation of components and test cases
can, therefore, be performed separately and in a loosely
coupled way.

Adding our verification infrastructure in a transparent
way has proved to be fairly straight-forward thanks to Frac-
tal’s introspection and extensibility capabilities. The fact
that the automatic integration and verification mechanisms
are added at runtime by Fractal to the components saves

development effort and cleanly separates testability and ac-
ceptance mechanisms from the functionalities of the com-
ponents. That said, ATLAS can be implemented in other
component frameworks without much effort, as it relies on
constructs present in most of them, such as interfaces, ports,
method calls and component instantiation.

6. Summary, Conclusions and Future Work

In this paper, we have presented some of the challenges
of the integration and verification of large-scale component-
based systems, such as MSS systems. We have described
ATLAS, our solution architecture based on Built-In Testing.
ATLAS not only permits to associate each component with
a set of test cases and dedicated interfaces to request testing
of other components, but also permits these test cases to
evolve dynamically with the system. While the original idea
of BIT was component integration testing at development-
time configuration, before deployment, we have shown in
our example case that, with ATLAS, this can be done during
deployment of a system, as runtime integration testing.

Although, in the current implementation we have
avoided the problems caused by runtime testing by repli-
cating the components, these effects are important and must
be considered. When components are tested during runtime
it is likely that side effects of the tests will propagate into the
rest of the system. Our future work on the implementation
will ensure that every component can be made test-aware
and that it is an easy task for the developer.

In our future work we will also study the usage of our
approach in large-scale systems formed by a large number
of components contained within relatively independent sub-
systems. The following primary issues will have to be con-
sidered.

The first issue concerns the “domino effect”: when a
binding or a component is modified, the modification can

potentially affect every component directly or indirectly
linked to it, as well as all the composite components that
contain this affected components. This means devising a
mechanism to notify components other than those adjacent
to the modification, in a scalable and distributed way.

Secondly, since analysing and performing the necessary
verification of the whole system is a costly operation, min-
imizing the disturbance caused by runtime testing will be
essential. This means reducing the number of tests being
performed. One of the possibilities is to exploit the fact
that between two system configurations, the difference is lit-
tle and the previous configuration has already been entirely
tested. If the notifications carry fine-grained information
about what part of the system has changed, the re-checking
of test cases can be reduced to only those which exercise
the affected part, reducing the cost of the runtime regres-
sion testing.

It is also possible to entirely automate the testing pro-
cess. After a change notification has been received, the test-
ing can be started right away by components themselves (in-
stead of by the system integrator). However, several aspects
must be taken care of. If the reconfiguration involves multi-
ple modifications, usually only the final configuration has to
be tested. The testing must also be ordered in a way that al-
lows to find errors more efficiently, reason about them more
effectively, and avoid the system to be suddenly flooded
with tests.

Another work direction is the inclusion of support for
verification of non-functional properties, such as resource
consumption, execution time, etc. Finally, we will also en-
sure the applicability of ATLAS to architectures other than
client-server, such as publish-subscribe architectures, which
present their own challenges in the testing process [15].

Acknowledgements. This work has been carried out as
part of the Poseidon project under the responsibility of the
Embedded Systems Institute (ESI), Eindhoven, The Nether-
lands. We want to thank Niels Willems of the visualization
group of Eindhoven University of Technology, for letting
us use his AISPlotter visualiser component in our example.
This project is partially supported by the Dutch Ministry of
Economic Affairs under the BSIK03021 program.

References

[1] A. Bertolino and A. Polini. A framework for component
deployment testing. In ICSE '03: Proceedings of the 25th
International Conference on Software Engineering, pages
221-231, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[2] D. Brenner, C. Atkinson, R. Malaka, M. Merdes, B. Paech,
and D. Suliman. Reducing verification effort in component-
based software engineering through built-in testing. Infor-
mation System Frontiers, 9(2-3):151-162, 2007.

(3]

(4]
(5]
(6]

(7]

8]
(9]

(10]

(11]

[12]

[13]
(14]

[15]

(16]

(17]

(18]

(19]

[20]

E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.
Stefani. An open component model and its support in java.
In 1. Crnkovic, J. A. Stafford, H. W. Schmidt, and K. C.
Wallnau, editors, CBSE, volume 3054 of Lecture Notes in
Computer Science, pages 7-22. Springer, 2004.

D. Deveaux and P. Collet. Specification of a contract based
built-in test framework for fractal, 2006.

Embedded Systems Institute. The poseidon project.
http://www.esi.nl/poseidon, 2007.

EU Commission. An integrated maritime policy for the
european union. European Commission, Maritime Affairs,
Oct. 2007.

D. Fisher. An emergent perspective on interoperation in sys-
tems of systems. Technical Report CMU/SEI-TR-2006-003,
Software Engineering Institute, 2006.

H.-G. Gross. Component-Based Software Testing with UML.
Springer, Heidelberg, 2005.

H.-G. Gross, M. Melideo, and A. Sillitti. Self-certification
and trust in component procurement. Science of Computer
Programming, 56(1-2):141-156, Apr. 2005.

H.-G. Gross, 1. Schieferdecker, and G. Din. Model-based
built-in tests. Electronic Notes in Theoretical Computer Sci-
ence, 111(1):161-182, 2005.

A. Harati-Mokhtari, A. Wall, P. Brooks, and J. Wang. Au-
tomatic Identification System (AIS): Data reliability and hu-
man error implications. Journal of Navigation, pages 373—
389, 2007.

J. Hartmann, M. Vieira, H. Foster, and A. Ruder. A UML-
based approach to system testing. Innovations in Systems
and Software Engineering, 1(1):12-24, 2005.

International Telecommunication Union. Recommendation
ITU-R M.1371-1, 2001.

M. W. Maier. Architecting principles for systems-of-
systems. Systems Engineering, 1(4):267-284, 1998.

A. Michlmayr, P. Fenkam, and S. Dustdar. Specification-
based unit testing of publish/subscribe applications. In
ICDCSW ’06: Proceedings of the 26th IEEE International
Conference Workshops on Distributed Computing Systems,
page 34, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

J. Morris, G. Lee, K. Parker, G. A. Bundell, and C. P. Lam.
Software component certification. Computer, 34(9):30-36,
2001.

P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-
based runtime software evolution. In ICSE "98: Proceedings
of the 20th international conference on Software engineer-
ing, pages 177-186, Washington, DC, USA, 1998. IEEE
Computer Society.

D. Suliman, B. Paech, L. Borner, C. Atkinson, D. Brenner,
M. Merdes, and R. Malaka. The MORABIT approach to
runtime component testing. In 30th Annual International
Computer Software and Applications Conference, volume 2,
pages 171-176, Sept. 2006.

J. Vincent, G. King, P. Lay, and J. Kinghorn. Principles of
Built-In-Test for Run-Time-Testability in component-based
software systems. Software Quality Journal, 10(2):115-133,
2002.

E. J. Weyuker. Testing component-based software: A cau-
tionary tale. IEEE Softw., 15(5):54-59, 1998.

