
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2010; 00:1–24
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Prioritizing Tests for Software Fault Diagnosis

Alberto Gonzalez-Sanchez1∗, Éric Piel1, Rui Abreu2,
Hans-Gerhard Gross1, Arjan J.C. van Gemund1

1Department of Software Technology, Delft University of Technology. The Netherlands.
2Department of Informatics Engineering, Faculty of Engineering, University of Porto, Portugal.

SUMMARY

During regression testing, test prioritization techniques select test cases that maximize the confidence on the
correctness of the system when the resources for quality assurance (QA) are limited. In the event of a test
failing, the fault at the root of the failure has to be localized, adding an extra debugging cost that has to be
taken into account as well. However, test suites that are prioritized for failure detection can reduce the amount
of useful information for fault localization. This deteriorates the quality of the diagnosis provided, making
the subsequent debugging phase more expensive, and defeating the purpose of the test cost minimization.
In this paper we introduce a new test case prioritization approach that maximizes the improvement of the
diagnostic information per test. Our approach minimizes the loss of diagnostic quality in the prioritized test
suite. When considering QA cost as the combination of testing cost and debugging cost, on our benchmark
set, the results of our test case prioritization approach show reductions of up to 60% of the overall combined
cost of testing and debugging, compared with the next best technique. Copyright c© 2010 John Wiley &
Sons, Ltd.

Received . . .

KEY WORDS: test prioritization; testing; diagnosis

1. INTRODUCTION

Software regression testing is a time-consuming but rather important task for improving software

reliability. Two main steps can be distinguished: (1) testing to find failures (i.e., detect the presence

of faults), and (2) finding the root causes of the failures (faults, defects, bugs). Whereas the former

is what is commonly known as “testing”, the latter is commonly denoted as “fault diagnosis”, “fault

localization” or “debugging”.

Given the significant cost associated with regression testing, test prioritization has emerged as

predominant technique to reduce testing cost, by trying to find failures as soon as possible [1, 2, 3,

4, 5, 6, 7, 8]. The main motivation behind test prioritization is that, the sooner failures are found,

the sooner diagnosis can commence.

The debugging phase can make use of automatic fault localization techniques, which help

to significantly reduce the manual debugging effort needed, as shown in [9, 10, 11, 12]. Fault

localization algorithms use the information provided by tests executed in the testing phase to deduce

a list of program elements (e.g., functions, statements) that are highly suspect to be at fault (the

∗Correspondence to: Department of Software Technology, Delft University of Technology. Mekelweg 4, 2628CD Delft,
The Netherlands. E-Mail: a.gonzalezsanchez@tudelft.nl

Contract/grant sponsor: POSEIDON project of the Embedded Systems Institute (ESI), Eindhoven, The Netherlands.
Partially Supported by the Dutch Ministry of Economic Affairs; contract/grant number: BSIK03021

Copyright c© 2010 John Wiley & Sons, Ltd.

Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2 A. GONZALEZ-SANCHEZ, ET. AL.

Figure 1. Test cost Ct and diagnosis cost Cd combined (left) and effect of test orders in the optimum (right)

diagnosis). Engineers then manually inspect the components top-down in search for the faults. The

better information is provided by tests, the least work will be wasted in the manual inspection.

What test prioritization techniques overlook, in general, is that the quality of the result of the fault

localization phase depends on the quality of the information provided by the testing phase. Testing

should be done with diagnosis in mind, from the first test.

The plot on the left hand side of Figure 1 illustrates the cost sources associated to regression

testing and debugging. Ct(N) denotes the aggregate time cost of testing, where N is the number of

tests. Cd(N) denotes the time cost associated with the diagnostic work performed by the software

developer to debug the actual defects. Ct(N) has a linear shape as a function of the number of tests

N , whereas Cd(N) has a geometric decreasing shape [10, 13]. The overall time cost of the combined

testing and diagnosis process, C, can be modeled by

C(N) = Ct(N) + α · Cd(N) (1)

where α expresses the possible factor between the cost of the regression tests Ct and the cost

of the manual inspection performed by the developer (typically high). After an initial decreasing

phase, C reaches its optimum point Copt. Past this point, new tests will not provide enough new

diagnostic information to compensate their cost, and C will increase. The location of the optimum

point depends on how fast Cd decreases, and the value of α. The effect of two different prioritization

techniques can be observed on the plot on the right hand side of Figure 1.

Recent work on the combination of test prioritization and fault localization [14, 15, 16]

has highlighted the fact that, while test prioritization minimizes the delay between testing and

diagnosis Ct(N), it does not maximize diagnostic information yield Cd(N). The reason is that

test prioritization aims at high code coverage, whereas diagnosis aims at partially revisiting already

covered code to further exonerate or indict defective components. The net effect of existing test

prioritization techniques is that the overall cost of the combined process of testing and debugging,

given defective code, is not minimized. This suboptimal situation corresponds to scenario (a) on the

right hand side plot in Figure 1.

In software development processes with high code production rates, the probability of introducing

at least one defect between subsequent revisions is considerable. Consequently, the probability of

having to apply diagnosis after regression testing is high. This calls for a prioritization technique

(i.e., diagnostic prioritization) that puts emphasis on fault localization performance from the first

test, rather than failure detection performance. The goal should be to reduce the overall QA cost,

i.e., the combined cost of testing and debugging, by performing a trade-off between testing and

debugging effort. This corresponds to scenario (b) in Figure 1.

Shifting the focus of test choice from failure detection to fault diagnosis is bound to cause an

increase in testing cost, if measured according to usual test cost metrics such as APFD [6]. However,

this increase is negligible once considered in the context of combined cost C, since usually the cost

of applying a test is orders of magnitude lower than manually inspecting a component (i.e., α in

Equation 1 is very large). Furthermore, even if α ≤ 1 (i.e., executing a test is as expensive as manual

inspection), it must be taken into account that a manual inspection will discard only one component,

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

PRIORITIZING TESTS FOR SOFTWARE FAULT DIAGNOSIS 3

whereas a test execution has the potential to discard half of the components if the test is properly

chosen.

In this paper we present and evaluate a novel, dynamic approach to diagnostic prioritization,

which aims to minimize the combined cost of testing and diagnosis. Unlike static test prioritization,

in diagnostic prioritization the tests are dynamically selected based on the actual pass/fail results

of previously executed tests (which varies per regression cycle), leading to higher diagnostic

performance per test, yielding the much steeper Cd(N) curve in scenario (b). In particular, we

make the following contributions:

1. We present an analysis of why test prioritization for failure detection deteriorates the

performance of fault localization algorithms, which motivates our alternative approach.

2. We introduce a test prioritization strategy with the goal of fault localization, contrasting

with existing approaches whose goal is failure detection. Our approach performs on-line test

prioritization depending on the outcome of the tests based on diagnostic information gain.

3. We evaluate our technique in a semi-synthetic setting, comparing it to existing prioritization

techniques in terms of both fault localization and failure detection performance.

The current paper represents novel work in the domain of test prioritization and diagnosis, and is

an extension of our preliminary work in diagnostic prioritization presented in [14]. The following

extensions have been added:

1. We refine our definition of diagnostic prioritization. Unlike in [14], we take into account the

possibility that not all test cases that cover the fault will result in a failure (i.e., the possibility

of false negatives or coincidental correctness.

2. We perform the evaluation of our technique under these new assumptions on three different

false negative rate scenarios (low, high, very high) on the Siemens programs [17] and extend

it to four larger and more realistic programs from the SIR repository [18]. Our results show

up to 60% reduction of the overall combined cost of testing and debugging, when compared

to the next best performing technique.

3. We present a discussion on the practical applicability issues of diagnostic prioritization, with

emphasis on the estimation of the input parameters (fault probability, false negative rate)

and the extent to which the accuracy of diagnostic prioritization is affected by erroneous

estimations.

The paper is organized as follows. In Section 2, we describe the main concepts of fault

diagnosis and the diagnosis algorithm used in our experiments. Section 3 surveys the existing

prioritization techniques with which we will compare our approach. In Section 4, we describe why

current prioritization techniques fall short for fault localization. Section 5 introduces diagnostic

prioritization and the information gain heuristic. Our evaluation goals and experimental setup

are described in Section 6, while the results are presented and discussed in Section 7. Section 8

discusses a number of practical considerations, including the sensitivity of our technique to

erroneous parameter estimations. Related work is surveyed in Section 9. Section 10 presents our

final conclusions and future work directions.

2. FAULT DIAGNOSIS

The objective of fault diagnosis is to pinpoint the precise location of a number of faults in a program

(bugs) by observing the program’s behavior given a number of tests. Although there is a large

number of different diagnosis techniques (see Section 9), our work is based on Bayesian diagnosis,

well-known from Model-Based Diagnosis, an area within AI. Compared to other, statistical

approaches such as Tarantula [11], Ochiai [9], and alternative techniques [19, 20, 21, 22, 23, 24, 25],

Bayesian diagnosis is founded on probability theory, and is the only technique that can serve as base

for our test prioritization heuristic search function, described in Section 4.

The following inputs are involved in diagnosis:

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

4 A. GONZALEZ-SANCHEZ, ET. AL.

• A finite set C = {c1, c2, . . . , cj , . . . , cM} of components (typically source code statements)

that are potentially faulty.

• A corresponding set of prior fault probabilities pj for each component. These priors represent

the knowledge available before any test is executed.

• A set of false negative rates (FNR) 0 ≤ hj ≤ 1 (for health) for each component cj . The value

of hj expresses the probability cj will not cause a failure when covered in a test iff cj is faulty.

This is also known as intermittency or coincidental correctness rate.

• A finite set T = {t1, t2, . . . , ti, . . . , tN} of tests with binary outcomes O =
(o1, o2, . . . , oi, . . . , oN), where oi = 1 if test ti failed, and oi = 0 otherwise.

• A N ×M test coverage matrix, A = [aij], where aij = 1 if test ti involves component cj , and

0 otherwise.

Bayesian fault diagnosis is aimed at obtaining a set of fault candidates D = 〈d1, . . . , dk〉. Each

candidate dk is a subset of the components that, at fault, explain the observed failures. For instance,

d = {c1, c3, c4} indicates that c1 and c3 and c4 are faulty, and no other component. As most previous

work [15, 11, 16], for the scope of this paper, we will assume that the system under test contains

exactly one fault. The j subindices designate members in C, whereas k designates members of

D. However, under the single fault assumption |D| = |C|, therefore these two indices can be used

interchangeably, as dk ≡ {ck}.
Due to the limited number of tests, the number of possible diagnostic explanations is typically

very high. The output of fault diagnosis, i.e., a diagnosis, is a component ranking, i.e., a list

of component indices, ordered by the likelihoods of each component being faulty. As already

mentioned, in this paper we consider a Bayesian approach to obtain this ranking. Therefore the

likelihoods are the fault probabilities output by the Bayesian reasoning process.

2.1. Diagnostic Ranking by Bayesian Reasoning

In the case of Bayesian approaches, the likelihood of a diagnosis corresponds to the posterior

probability of a component being faulty, given the outcome of the executed test, Pr(dk|oi), for a

particular diagnosis dk. As there can only be one correct explanation, all the individual probabilities

add up to 1.

Initially, for each component ck, the probability of each explanation is Pr(dk) = pk. The value of

pk represents the knowledge available before any test is executed. Component priors are typically

derived from defect density data.

For each test case, the probability of each diagnostic explanation dk ∈ D is updated depending

on the outcome oi of the test, following Bayes’ rule:

Pr(dk|oi) =
Pr(oi|dk)

Pr(oi)
· Pr(dk) (2)

In this equation, Pr(oi|dk) represents the probability of the observed outcome, if that diagnostic

explanation dk is the correct one, given by

Pr(oi = 1|dk) = 1− Pr(oi = 0|dk) = aik · (1− hk) (3)

where hk is the false negative rate of the faulty component. If hk = 0.1, this means that, if ck was

the fault, a 10% of the test cases that cover ck would not produce a failure, i.e., an erroneous result.

Pr(oi) represents the probability of the observed outcome, independently of which diagnostic

explanation is the correct one. The value of Pr(oi) is a normalizing factor that is given by

Pr(oi) =
∑

dk∈D

Pr(oi|dk) · Pr(dk) (4)

and need not be computed directly.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

PRIORITIZING TESTS FOR SOFTWARE FAULT DIAGNOSIS 5

Program: Character Counter t1 t2 t3 t4 t5 t6 t7 t8 Prior

c0 0 0 0 0 0 0 0 0

c1 main() { 1 1 1 1 1 1 1 1 1/13
c2 int let, dig, other, c; 1 1 1 1 1 1 1 1 1/13
c3 let = dig = other = 0; 1 1 1 1 1 1 1 1 1/13
c4 while(c = getchar()) { 1 1 1 1 1 1 1 1 1/13
c5 if (’A’<=c && ’Z’>=c) 1 1 1 1 1 1 1 0 1/13
c6 let += 2; /* FAULT */ 1 0 1 1 0 0 1 0 1/13
c7 elif (’a’<=c && ’z’>=c) 1 1 0 1 1 1 1 0 1/13
c8 let += 1; 1 0 0 0 1 0 1 0 1/13
c9 elif (’0’<=c && ’9’>=c) 1 1 0 1 1 1 0 0 1/13
c10 dig += 1; 1 1 0 1 0 0 0 0 1/13
c11 elif (isprint(c)) 0 0 0 0 1 1 0 0 1/13
c12 other += 1;} 0 0 0 0 1 0 0 0 1/13
c13 printf("%d %d %d\n", 1 1 1 1 1 1 1 1 1/13

let, dig, others);}

Test case outcomes 1 0 1 1 0 0 1 0

Table I. Faulty program and Fault Diagnosis inputs

2.2. Residual Diagnostic Cost

The final diagnosis after N observations DN is returned to the user as the basis to find the actual

fault. Typically the user finds the fault by inspecting each candidate in the ranking in descending

order according to the updated diagnostic probabilities.

In the following, we define Cd as the number of components the developer has to examine until

finding the real fault d∗ [10]. It corresponds to the position of d∗ in the ranking. Because multiple

explanations can be assigned the same probability, the value of Cd is averaged between the ranks of

explanations that share the same probability, amongst which the real fault d∗ is located.

Cd =
|{k : Pr(dk) > Pr(d∗)}|+ |{k : Pr(dk) ≥ Pr(d∗)}| − 1

2
(5)

The above model for Cd is similar to existing diagnostic performance metrics [11, 22].

There are two ways of reducing diagnostic cost. One can try to develop better techniques to reduce

the residual diagnosis effort Cd by reducing the number of candidates, or improving the ranking so

that the real explanation d∗ ranks higher.

One can also try to reduce testing cost, by executing only a subset of the tests. Prioritizing T in

such a way that the executed subset of T yields the highest diagnostic accuracy (minimizing Cd) is

the main focus of this paper.

2.3. Example Diagnosis

Table I shows an example faulty program [4], eight tests (t1...t8), and their respective statement

coverage (the matrix A is transposed for the sake of readability).

As we assume a single fault is present, each explanation in D corresponds to one code

statement: dk ≡ {ck}. We will consider hk = 0.1 for all components. Consequently, the initial

probability of each diagnostic candidate corresponds to the prior probability of each component:

∀dk ∈ D,Pr(dk|i = 0) = pk = 1
13 .

After applying test t1, we observe a failure. The probabilities of all the candidates containing

covered statements (including d6) are updated by

Pr(dk|o1) =
Pr(o1 = 1|dk) · Pr(dk)

Pr(o1)
=

9
10 ·

1
13

99
130

=
1

11

The candidates corresponding to statements that were not covered are updated by

Pr(dk|o1) =
Pr(o1 = 1|dk) · Pr(dk)

Pr(o1)
=

0 · 1
13

99
130

= 0

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

6 A. GONZALEZ-SANCHEZ, ET. AL.

Their zero value follows from the fact that, if they were not involved in the test, and the test failed,

it is impossible that these statements are faulty. This is only true under the single fault assumption

used in this paper.

After applying test t2, no failure occurs. The probabilities of the 9 covered statements

(d1, d2, d3, d4, d5, d7, d9, d10, d13) are then updated by

Pr(dk|o2, o1) =
1
10 ·

1
11

29
110

=
1

29

and the 2 uncovered statements (c6, c8) by

Pr(dk|o2, o1) =
1 · 1

11
29
110

=
10

29

The normalizing value 29
110 comes from adding up the 9 numerators of the covered statements and

the 2 non-covered statements: 9 · 1
10 ·

1
11 + 2 · 1

11 = 29
110 (Equation 4).

The next test to be applied is t3, which fails. The probabilities for d1, d2, d3, d4, d5, d13 are updated

to

Pr(dk|o3, o2, o1) =
9
10 ·

1
29

144
290

=
1

16

The probability of d6 is updated to

Pr(dk|o3, o2, o1) =
9
10 ·

10
29

144
290

=
10

16

As d8 is not being covered, its probability is updated to 0. From this point on, d6 is ranked on top,

which means no diagnostic effort is wasted and the diagnosis is finished from a practical point of

view, i.e. it is still ambiguous but Cd = 0. The subsequent tests will only reaffirm this diagnosis

by bringing Pr(d6) very close to 1, i.e., they will make the diagnosis perfect, i.e. unambiguous.

The complete evolution for the 8 test cases is shown in Table II. Empty cells correspond to zero

probabilities, whereas 0.00 represent very small non-zero probabilities.

Test oi Covered Statements c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 Cd

0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.500
t1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.357
t2 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0.03 0.03 0.03 0.03 0.03 0.34 0.03 0.34 0.03 0.03 0.03 0.038
t3 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0.06 0.06 0.06 0.06 0.06 0.63 0.06 0.000
t4 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0.06 0.06 0.06 0.06 0.06 0.63 0.06 0.000
t5 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0.01 0.01 0.01 0.01 0.01 0.94 0.01 0.000
t6 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.000
t7 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.000
t8 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.000

Table II. Evolution of D for our example system and default test order.

3. TEST CASE PRIORITIZATION

Test case prioritization techniques order test cases with respect to a given goal, so that those tests

with the highest utility (which bring the test process closer to its goal), are given higher priorities

and therefore are executed earlier in the testing process.

A failure is a deviation of the expected behavior of a program, caused by a fault. The most

common prioritization goal is to increase the rate of failure detection. It means, tests are executed

in an order such that failures occur as early as possible in the testing process, so that confidence

in the presence or absence of faults is reached faster. The following prioritization techniques have

been proposed in order to achieve this goal, and will be used in the evaluation to compare with our

diagnostic prioritization technique.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

PRIORITIZING TESTS FOR SOFTWARE FAULT DIAGNOSIS 7

3.1. Random

Random prioritization (RND) is the most straightforward prioritization criterion. It orders test cases

according to random permutations of the original test suite. Random permutations are used as

control in many prioritization experiments [2, 6, 7].

3.2. Statement coverage

Following statement coverage prioritization, the test cases that cover the highest total number of

statements are executed first. This approach is based on the assumption that the more statements are

covered by a test, the higher is the probability of triggering a failure. If a statement is covered without

producing a failure, covering it again is less useful as it is less likely it will produce a failure [2, 6].

This reasoning conduces to the definition of the additional coverage heuristic (ADDST), where test

cases are selected iteratively in terms of the additional coverage they yield, taking into account all

the test cases that were already executed, i.e.,

HADDST (ti) =

M∑

j=1

aij · (1− covj) (6)

where covj = 1 if statement j has been covered so far.

3.3. Fault-exposing potential (FEP)

This criterion adapts ADDST’s “binary” approach (i.e., covered, not covered) to a continuous

confidence value, to account for the fact that a test may produce a false negative. If a statement

has been covered a number of times, the confidence on its correctness increases, making it less

likely to be chosen again. We will consider only the additional FEP prioritization heuristic, given by

HFEP (ti) =

M∑

j=0

FEPij · (1 − confj) (7)

where confj is the confidence in statementj being correct. FEPij is the probability that test i will

fail for statement j. The value of confj is updated after executing test ti according to

conf ′
j = confj + FEPij · (1− confj) (8)

In our experiments, the FEPij value corresponds to the complementary value of the false negative

rate: FEPij = 1− hj .

3.4. Adaptive Random Testing

ART is a hybrid random-coverage-based test ordering [4]. It selects test cases in two steps, first it

samples a group of tests randomly, and from that group it selects the test that maximizes a distance

function with the already executed test cases. This distance function can be either the minimum

distance with all executed tests, the maximum distance, or the average distance. In this paper we

will compare with the minimum distance heuristic, as it was cited [4] as the most promising one. It

is defined as

HART (ti) = min
tj∈C

(δ(ti, tj)) (9)

where C is the set of already applied tests and δ is the distance function used, in [4] the Jaccard

distance.

4. PRIORITIZATION AND DIAGNOSIS

Previous empirical work has shown that early failure detection and fault localization seem to be

rather incompatible goals [15, 16]. The evolution of the diagnostic effort Cd, per unit of test effort,

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

8 A. GONZALEZ-SANCHEZ, ET. AL.

Ct, is negatively affected by criteria for early failure detection. Random ordering, which has been

traditionally considered the baseline prioritization technique [2, 6, 7], was found to perform as good

as or better than all other prioritization techniques, except ADDST. However, even for the latter case

the random order was better for some subject programs [15].

The main reason for the poor diagnostic performance of existing prioritization techniques is that

they perform off-line prioritization, in such a way that tests maximize the probability of failing

assuming all tests will pass. This approach may be appropriate for regression testing, but not for

fault diagnosis. When performing fault diagnosis, if a test has failed, the components covered by the

test become important suspects. However, many regression prioritization algorithms will choose a

next test that covers different components, whereas from the diagnostic point of view, the next test

case should help differentiate between the current suspects. Therefore a test order independent of

the outcomes of the tests cannot be used. The order has to be adapted on-line, depending on the

output of the previous tests.

Table III shows an example of how traditional test prioritization for failure detection fails for

diagnosis, when using the ADDST heuristic for our example system (shown in Table I). We use the

Bayesian diagnosis approach from Section 2.1, assuming a fault will cause a 10% of false negatives

(hk = 0.1). For clarity, the fourth column shows only the probabilities of diagnostic explanations

that are non-zero. Initially, no statement has been covered, and D ranks every candidate with

uniform probability.

ADDST selects test t1 as first test, as it covers the most test cases, and, indeed, t1 produces the

first failure. As a result of the failure, all the ck covered by t1 move to the top of the ranking.

Unfortunately, the test case covered many statements, so Cd does not decrease too much. In the

second step, test t5 is selected because it provides the highest additional coverage, and passes.

Because it passed, the updated probability of those candidates in D that correspond to statements

covered by t5 drop below the ones that were not covered. The extent of this drop depends on hj ,

the lower hj the lower they will drop. The statements that where not covered remain at the top of

the ranking. Full coverage has been reached, so in the third step, the coverage is reset as described

in [6], instead of falling back to a random sequence. Test t4 provides the highest coverage, and

indeed fails. However, it covered both c6 and c10, so it provides no extra information and neither

D nor Cd change. This happens also in the fourth step for t6. Finally, t7, a test case that covers c10
but not c6 is chosen. As it fails, c10, which was not covered, is assigned a zero probability (since

we assumed there is only one fault). c6 remains as the only most likely explanation. As we can see,

ADDST selects 2 tests that provide no information to the diagnosis, independent of their outcome,

i.e., resulting in wasted testing effort Ct from the point of view of diagnostic performance Cd.

As a comparison, Table IV shows the optimal test order for unequivocally diagnosing a fault in

c6. With just one test case, the set of candidates is drastically reduced. The next test case finalizes

the diagnosis by using a test case that bisects D. The order of the remaining tests is irrelevant for

the diagnosis, as none will provide more information. The plot in Figure 2 depicts the evolution of

both approaches.

Test oi Covered Statements c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 Cd

0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.500
t1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.357
t5 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0.03 0.03 0.03 0.03 0.03 0.34 0.03 0.03 0.03 0.34 0.03 0.038
t4 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0.03 0.03 0.03 0.03 0.03 0.35 0.03 0.03 0.35 0.03 0.038
t6 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.48 0.00 0.038
t7 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0.01 0.01 0.01 0.01 0.01 0.93 0.01 0.01 0.000
t2 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.000
t3 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.000
t8 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.000

Table III. Evolution of D for the ADDST heuristic for our example system.

Although simple, this example demonstrates that maximizing the probability of failure does

not maximize the information that the diagnostic algorithm receives. In fact, as test cases that

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

PRIORITIZING TESTS FOR SOFTWARE FAULT DIAGNOSIS 9

Test oi Covered Statements c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 Cd

0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.500
t5 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0.03 0.03 0.03 0.03 0.03 0.32 0.03 0.03 0.03 0.32 0.03 0.03 0.03 0.038
t7 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0.05 0.05 0.05 0.05 0.05 0.55 0.05 0.05 0.05 0.000
t6 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0.01 0.01 0.01 0.01 0.01 0.85 0.01 0.08 0.01 0.000
t1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0.01 0.01 0.01 0.01 0.01 0.85 0.01 0.08 0.01 0.000
t4 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0.01 0.01 0.01 0.01 0.01 0.93 0.01 0.01 0.000
t2 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.000
t3 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.000
t8 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.000

Table IV. Optimal evolution of D for c6 in our example system.

Test oi Covered Statements c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 Cd

0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.500
t3 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.214
t8 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0.04 0.04 0.04 0.04 0.40 0.40 0.04 0.038
t2 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0.01 0.01 0.01 0.01 0.08 0.86 0.01 0.000
t5 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0.00 0.00 0.00 0.00 0.01 0.98 0.00 0.000
t6 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.000
t1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.000
t4 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.000
t7 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.000

Table V. Evolution of D for the IG heuristic for our example system.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6 7 8

D
ia

g
n

o
s
ti
c
 E

ff
o

rt
 (

C
d
)

Testing Effort (Ct)

AST
IG

OPT

Figure 2. Cd(Ct) for three prioritization approaches

cover many statements are those with the highest failure probability, those tests will not provide

much useful information because the number of remaining diagnostic candidates will not decrease

substantially.

In contrast, for test prioritization for diagnosis, we need test cases that revisit partially the already

tested system, to introduce diversity in the coverage and reduce the set of suspect components.

5. DIAGNOSTIC PRIORITIZATION

In the following we will present diagnostic prioritization, an on-line greedy prioritization approach

that takes into account the observed test outcomes to determine the next test case. Our work

is inspired by research in sequential diagnosis of hardware systems, where algorithms exist to

diagnose systems with permanent [26] and intermittent [12] failures. A preliminary study on

diagnostic prioritization for software was presented in [14].

Diagnostic prioritization uses the same inputs as traditional test prioritization and fault

localization techniques in software engineering: component set C, prior fault probabilities pj , tests

T and coverage matrix A.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

10 A. GONZALEZ-SANCHEZ, ET. AL.

 0

 0.2

 0.4

 0.6

 0.8

 1

P
r(

d
k
)

dk

 0

 0.2

 0.4

 0.6

 0.8

 1

P
r(

d
k
)

dk

Figure 3. Very ambiguous diagnosis (left) and very precise diagnosis (right).

For diagnosis, the best tests are those that, at each step, maximize the reduction of diagnostic cost

Cd. However, since we do not know the correct diagnosis (d∗) a different heuristic has to be used.

In general, good diagnoses are those in which one of the candidates has a much larger probability

than the rest, i.e, it stands out over all other candidates. Figure 3 illustrates what we want to achieve.

The plot on the left shows a poor diagnosis where no clear candidate exists. Our objective is to

produce a diagnosis like the one on the right hand side plot.

A reduction in the ambiguity of the diagnosis can be seen as an increase in diagnostic information,

i.e., a reduction of the information entropy of the candidate set D. Applying this reasoning, at each

decision step in the test sequence, the test yielding the highest average information gain is chosen.

The information gain heuristic [27], IG, is defined as

HIG(D, ti) = H(D) − Pr(oi = 0) ·H(D|oi = 0)− Pr(oi = 1) · H(D|oi = 1) (10)

where H(D) is the information entropy of the diagnostic candidate set D, defined as

H(D) = −
∑

dk∈D

Pr(dk) · log2(Pr(dk)) (11)

D|oi = 0 represents the updated diagnosis if test ti passes, and D|oi = 1 if it fails. In the case when

any Pr(dk|oi) = 0, H can still be calculated, as lim
x→0

= x · log2 x = 0.

The rationale of the IG heuristic is that H is an estimation of both the remaining tests towards

an unambiguous diagnostic, and the residual diagnostic cost if testing would stop at the given

state. Under ideal conditions, diagnostic prioritization performs a binary search, bisecting the set

of candidates after each test. Therefore, the number of tests (Ct) needed to reach a diagnosis is

related to the number of binary tests needed to separate the candidates.

Furthermore, H and Cd are both monotonically decreasing after each test. Ideally, after each test,

D contains half the number of candidates with non-null probabilities, reducing Cd in half and H
by 1 bit. Therefore, a decrease in H also represents a reduction in residual diagnostic cost Cd, even

when their correlation is not so strong.

The pseudocode in Algorithm 1 describes all the steps in the information gain prioritization

procedure. At every decision step, the test that maximizes IG is chosen, and then executed by the

RUNTEST command. Once the result is available, the probabilities of each of the candidates are

updated. To avoid repeating a test, its row in A is removed by REMOVEROWIN. Table V shows

the evolution of D and Pr(dk) in our example, for each test selected by the algorithm. The plot

in Figure 2 depicts the evolution of Cd with respect to Ct compared to ADDST and the optimal

solution.

5.1. Time/Space Complexity

Conceptually, when considering all the possible test outcomes, a test suite prioritized for diagnosis

is a tree, in contrast to off-line prioritization techniques using a static list. Figure 4 shows an example

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

PRIORITIZING TESTS FOR SOFTWARE FAULT DIAGNOSIS 11

Algorithm 1 Greedy Information Gain Prioritization

D ← ({c1}, . . . , {cM})
for all dk ∈ D do

Pr[dk] = pj

for l ← 1, N do

i = argmax (A,HIG(D, ti))
oi = RUNTEST(ti)
for all dk ∈ D do

Pr[dk] =
Pr(oi|dk)·Pr[dk]

Pr(oi)

REMOVEROWIN(A, i)
return SORT(D, Pr)

of such a tree. Circular nodes contain the updated sets of diagnostic candidates D at each point in

the decision process, and rectangular nodes represent which test is applied at each step.

D0

t2

D1

t6

D3

t1

D7

p

D8

f

p

D4

t5

D9

p

D10

f

f

p

D2

t1

D5

t3

D11

p

D12

f

p

D6

t3

D13

p

D14

f

f

f

...
...

...
...

...
...

...
...

Figure 4. Decision tree of the IG-prioritized test suite

Although the complete tree has up to O(2N) nodes, and therefore the complexity of diagnostic

prioritization is O(M ·N · 2N), when calculated on-line, only the path corresponding to the

observed test outcomes has to be calculated. This is marked with thicker lines in Figure 4.

Consequently, the algorithmic complexity of the information-gain approach is O(M ·N2), similar

to the ADDST heuristic. Comparison with the worst case O(M3 ·N) complexity of ART [15]

depends on the relative size of M and N . In the benchmark suite used in our experiments N is

much bigger than M , therefore ART has a somewhat lower cost.

6. EXPERIMENTAL SETUP

In order to evaluate the applicability and performance of diagnostic prioritization, we address the

following questions.

Question 1: What is the evolution of diagnostic effort (Cd) with respect to testing effort (Ct) for

the information gain heuristic IG? How does IG compare to RND, ADDST, FEP and ART?

Question 2: What is the fault detection performance of the sequences produced by IG? Since IG is

not aimed at maximizing fault probability, we expect an impact on the failure detection performance.

Our aim is to quantify this impact.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

12 A. GONZALEZ-SANCHEZ, ET. AL.

Question 3: What is the best prioritization technique, taking into account the overall combined

cost of testing and diagnosis? This third question is the most relevant. Our hypothesis is that, even

if failure detection performance is impacted, it will be greatly compensated by the return in terms

of diagnostic cost savings.

For our study, we use a set of seven test programs known as the Siemens set [17], and 4 programs

from the Software Infrastructure Repository (SIR) [18]. Each program has a set of test inputs that

ensures full code coverage. Table VI provides more information about the programs (for more

detailed information refer to [17] and [18]). Although the Siemens set and SIR programs were not

assembled with the purpose of testing fault diagnosis techniques, it is typically used by the research

community as the standard set of programs to test their techniques.

Program LOC Tests Description

print tokens 563 4130 Lexical Analyzer
print tokens2 509 4115 Lexical Analyzer

replace 563 5542 Pattern Matcher
schedule 412 2650 Priority Scheduler
schedule2 307 2710 Priority Scheduler

tcas 173 1608 Aircraft Control
tot info 406 1052 Information Measure

space 9126 150 ADL Compiler
gzip 7933 210 Data Compression
sed 7125 370 Stream Editor
grep 13287 809 String Matching

Table VI. Set of programs and versions used in the experiments

The coverage matrix A of each program is obtained by instrumenting each of the programs with

Zoltar [28] to obtain the statements covered by each test case. Type and variable declarations and

other static code, which are not instrumented by Zoltar, are excluded from diagnostic rankings

and effort calculations.

Each program is provided with a number of seeded faults (real in the case of space). The

number and distribution of those faults are not enough to obtain statistically significant results in

some cases, given that diagnostic prioritization is designed for best average performance among the

whole universe of potential faults. Therefore we opt for a semi-synthetic approach, using the original

test matrices, but simulating a bigger sample of faults and error vectors than the ones provided by

the Siemens set. The test outcomes are obtained by randomly choosing a faulty statement with

uniform probability. The simulated error vector is obtained by using the faulty statement’s column

in A. Every time the fault ck is covered, an error is simulated from a Bernoulli distribution with

probability p = 1− hk. We simulate three different FNR scenarios: low with 10% FNR (hk = 0.1),

high with 50% FNR (hk = 0.5), and very high with 90% FNR (hk = 0.9).

To answer Question 1, we measure and plot the evolution of Cd with respect to Ct for the first

100 tests of each program’s prioritized test suite, for 10 runs for 100 simulated sample faults (1000

runs in total per technique). We compare the RND, ART, ADDST, FEP and IG heuristics in terms of

the normalized area S under the Cd curve and above the diagnostic asymptote (the Cd value when

the complete test suite has been executed), according to

S =
1

100
·

100∑

i=1

(Cd(i)− Cd(N)) (12)

We prefer this metric to, e.g., the value of Cd after an arbitrary number of tests or the number of

tests required to reach an arbitrary Cd. The reason for this is that we want to avoid the definition of

arbitrary performance thresholds.

With respect to Question 2, the test case in which the first failure occurs is stored, for each of

the prioritized test suites. We compare the occurrence of the first failure for RND, ART, ADDST,

FEP and IG heuristics. Following [6] we calculate the APFD measure to evaluate the rate of fault

detection for the prioritized test suites. For a test suite with n tests and a set of m faults, where each

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

PRIORITIZING TESTS FOR SOFTWARE FAULT DIAGNOSIS 13

fault Fi is first revealed in test Nffi, the APFD value of such test suite is given by

APFD = 1−
Nff1 +Nff2 + . . .+Nffm

nm
+

1

2n
(13)

In order to answer Question 3, we calculate the minimum possible combined cost of the detection

and residual diagnosis of each fault, Copt, as can be seen in Figure 1. We assume that the test cost and

(absolute) residual diagnosis cost can be modeled according to C = Ct + Cd(Ct), i.e., we ignore

relative differences in test cost and absolute residual diagnosis cost (i.e., α = 1 in Equation 1).

7. RESULTS

7.1. Question 1: Fault Localization Performance

Table VII shows the score values for each program and heuristic. The value marked in bold indicates

the best performing technique or techniques with a 95% confidence according to the Bonferroni

mean separation test. To further illustrate our results, Figure 5 shows the evolution of Cd with

respect to the number of executed tests Ct, per program, for the h̄ = 0.5 scenario.

IG is consistently better than any other technique for every program and every false negative rate.

No other technique achieves the improvement rate of IG. It can also be seen how in general, as the

FNR increases, the difference between IG and RND narrows, as choices become more and more

uncertain.

In our experiments we observe how ADDST, and especially FEP, are the worst in terms of

Cd evolution, being even worse than RND. However, this would seem to contradict previous

literature [15], where random sequences were generally worse than ADDST except for one case.

The reason is that the work in [15] was analyzing the performance exclusively for the small set

of faults present in the Siemens set for each program. As pointed out in [6], the original faults in

Siemens are located in hard to reach areas (i.e., covered only by a few tests), which favors ADDST

and FEP. However, in our simulations faults can be anywhere in the program’s code, eliminating the

bias that favors ADDST and FEP.

Our experimental results are consistent with our theory in Section 4, that maximizing failure

probability hinders the improvement of Cd because it causes the execution of tests that cover an

excessive number of components.

The plot for schedule2 in Figure 5 depicts an interesting case where A is extremely dense

(including tests with full coverage). This makes FEP perform extremely poorly because it chooses

first tests that provide no diagnostic information at all.

In most cases, the order created by ART is better than RND because it chooses tests always at a

certain distance to the already applied ones. By doing this, the chance of choosing a test that bisects

the current set of diagnostic candidates increases, providing a slight advantage over RND.

Apparently contradicting our predictions, the performance of ADDST and FEP is actually better

than RND for the larger SIR programs. Furthermore, it is not significantly different from IG in some

of the h = 0.9 cases. The answer to this apparent contradiction resides in the shape and distribution

of statement coverage in the test matrix A, and will be discussed in the Section 7.4.

In summary, based on the plots, and the statistical analysis, we conclude that IG is most suitable

for the purpose of fault localization, given its performance and robustness to test matrices of

differing sizes and shapes and false negative rates. In the next section we will see how this implies

a trade-off with failure detection.

7.2. Question 2: Failure Detection Performance

Table VIII shows the averaged APFD scores for each heuristic. The value marked in bold indicates

the best performing technique or techniques with a 95% confidence according to the Bonferroni

mean separation test. This is complemented with Figure 6, where the average, minimum and

maximum APFD of each technique are depicted.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

14 A. GONZALEZ-SANCHEZ, ET. AL.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50

C
d
 /
 (

M
-1

)

Tests

printtokens

RND
ART

ADST
FEP

IG

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50

C
d
 /
 (

M
-1

)

Tests

printtokens2

RND
ART

ADST
FEP

IG

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50

C
d
 /
 (

M
-1

)

Tests

schedule

RND
ART

ADST
FEP

IG

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50

C
d
 /
 (

M
-1

)
Tests

schedule2

RND
ART

ADST
FEP

IG

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50

C
d
 /
 (

M
-1

)

Tests

tcas

RND
ART

ADST
FEP

IG

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50

C
d
 /
 (

M
-1

)

Tests

totinfo

RND
ART

ADST
FEP

IG

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50

C
d
 /
 (

M
-1

)

Tests

replace

RND
ART

ADST
FEP

IG

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50

C
d
 /
 (

M
-1

)

Tests

space

RND
ART

ADST
FEP

IG

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50

C
d
 /
 (

M
-1

)

Tests

sed

RND
ART

ADST
FEP

IG

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50

C
d
 /
 (

M
-1

)

Tests

gzip

RND
ART

ADST
FEP

IG

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50

C
d
 /
 (

M
-1

)

Tests

grep

RND
ART

ADST
FEP

IG

Figure 5. Cd(N) for the various prioritization approaches

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

PRIORITIZING TESTS FOR SOFTWARE FAULT DIAGNOSIS 15

Program h̄ RND ART ADDST FEP IG

0.1 0.036 0.029 -18.5% 0.076 +112.3% 0.097 +169.1% 0.023 -36.9%
print tokens 0.5 0.056 0.050 -10.5% 0.112 +101.0% 0.135 +143.1% 0.035 -36.8%

0.9 0.133 0.128 -3.8% 0.207 +55.1% 0.173 +29.7% 0.096 -28.1%

0.1 0.059 0.053 -11.0% 0.093 +57.5% 0.117 +98.9% 0.045 -24.2%
print tokens2 0.5 0.085 0.075 -11.6% 0.116 +36.7% 0.152 +79.7% 0.060 -28.7%

0.9 0.138 0.137 -0.9% 0.198 +43.2% 0.176 +27.6% 0.115 -16.5%

0.1 0.026 0.024 -8.3% 0.035 +34.8% 0.040 +55.0% 0.015 -43.4%
replace 0.5 0.046 0.047 +1.2% 0.062 +35.1% 0.069 +49.4% 0.028 -38.8%

0.9 0.127 0.140 +10.2% 0.160 +25.5% 0.155 +21.7% 0.103 -19.4%

0.1 0.042 0.040 -4.1% 0.046 +9.0% 0.052 +25.0% 0.016 -61.2%
schedule 0.5 0.065 0.063 -3.7% 0.077 +19.2% 0.103 +59.2% 0.029 -56.1%

0.9 0.151 0.141 -6.3% 0.152 +0.8% 0.172 +14.1% 0.103 -31.8%

0.1 0.070 0.063 -9.4% 0.090 +29.5% 0.107 +53.8% 0.022 -68.8%
schedule2 0.5 0.106 0.105 -1.1% 0.155 +46.4% 0.219 +106.0% 0.040 -62.2%

0.9 0.135 0.135 -0.2% 0.166 +22.5% 0.208 +53.6% 0.100 -26.3%

0.1 0.065 0.064 -1.4% 0.106 +63.5% 0.106 +63.9% 0.057 -12.8%
tcas 0.5 0.093 0.089 -4.8% 0.164 +76.7% 0.167 +79.5% 0.084 -10.1%

0.9 0.146 0.146 +0.0% 0.181 +23.7% 0.181 +23.6% 0.135 -7.8%

0.1 0.038 0.036 -6.2% 0.039 +0.6% 0.048 +25.3% 0.024 -37.1%
tot info 0.5 0.072 0.063 -13.4% 0.063 -12.5% 0.088 +21.4% 0.038 -47.4%

0.9 0.145 0.150 +3.6% 0.126 -13.2% 0.148 +2.5% 0.106 -27.1%

0.1 0.039 0.028 -26.9% 0.018 -52.8% 0.018 -53.6% 0.014 -63.8%
space 0.5 0.061 0.049 -19.3% 0.044 -28.4% 0.037 -39.4% 0.031 -49.0%

0.9 0.160 0.169 +5.8% 0.162 +1.0% 0.158 -1.1% 0.150 -6.4%

0.1 0.034 0.030 -11.4% 0.020 -40.6% 0.019 -42.3% 0.015 -55.6%
grep 0.5 0.056 0.055 -1.8% 0.040 -27.3% 0.036 -35.9% 0.030 -46.3%

0.9 0.167 0.215 +28.8% 0.181 +8.8% 0.137 -17.9% 0.131 -21.5%

0.1 0.069 0.045 -34.0% 0.032 -54.0% 0.031 -54.7% 0.027 -60.9%
gzip 0.5 0.098 0.068 -30.7% 0.060 -39.1% 0.053 -45.7% 0.050 -48.5%

0.9 0.194 0.165 -15.0% 0.163 -16.2% 0.140 -27.9% 0.132 -32.3%

0.1 0.041 0.031 -24.3% 0.025 -39.0% 0.025 -38.4% 0.019 -52.7%
sed 0.5 0.067 0.059 -11.4% 0.052 -21.8% 0.051 -23.2% 0.037 -44.0%

0.9 0.168 0.182 +8.2% 0.159 -5.6% 0.149 -11.4% 0.138 -18.3%

Table VII. Cd performance results (lower is better)

Failure detection performance can be explained analytically by modeling the number of tests that

need to be executed until the first failure occurs, Nff , by a geometric distribution, X ∼ Geo(p),
whose expected value is E[X] = p−1. The objective of FEP and ADDST is to choose tests with

maximum failure probability, ideally p = 1.0. Therefore approximately 1 test is needed on average

(Nff ≈ 1). On the other hand, IG tends to select test cases that balance the probability of passing

and failing, ideally p = 0.5, and therefore on average needs 2 tests (Nff = 2).

It can be clearly seen how ADDST, and especially FEP, are the best performing techniques. This

is expected, as the assumptions under which FEP and ADDST were devised, i.e., maximization of

failure probability, are the most favorable. The failure detection performance of IG is lower than

FEP and ADDST and slightly higher than ART and with a lower dispersion. ART has a better

performance than random and a lower dispersion, consistent with [4]. Again, this is caused by the

coverage distance kept between each test.

The APFD performance of IG for the SIR programs is similar to FEP. This is again caused by the

shape and sparsity of the matrices, and will be discussed in Section 7.4.

In summary, when considering early failure detection as the main goal, FEP and ADDST are more

suitable for this purpose than IG. This result is consistent with previous literature [6]. However,

given the small difference with IG, and the fact that for the large programs and very high FNR

scenarios IG behaves essentially like FEP, IG is a suitable alternative. Furthermore, in the cases

where FEP and ADDST clearly outperform IG, the trade-off of APFD for Cd is compensated greatly,

as we will see in the next section.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

16 A. GONZALEZ-SANCHEZ, ET. AL.

Program h̄ RND ART ADDST FEP IG

0.1 0.941 0.965 +2.6% 0.998 +6.0% 0.998 +6.1% 0.984 +4.6%
print tokens 0.5 0.904 0.938 +3.8% 0.978 +8.2% 0.989 +9.4% 0.959 +6.0%

0.9 0.673 0.714 +6.2% 0.813 +20.8% 0.874 +30.0% 0.789 +17.4%

0.1 0.972 0.983 +1.1% 0.997 +2.6% 0.998 +2.6% 0.987 +1.5%
print tokens2 0.5 0.943 0.962 +2.0% 0.972 +3.1% 0.987 +4.7% 0.963 +2.1%

0.9 0.644 0.663 +3.1% 0.648 +0.6% 0.738 +14.6% 0.708 +10.0%

0.1 0.946 0.955 +1.0% 0.991 +4.8% 0.993 +5.0% 0.983 +4.0%
replace 0.5 0.912 0.920 +0.9% 0.963 +5.6% 0.986 +8.1% 0.961 +5.4%

0.9 0.658 0.651 -1.0% 0.639 -2.9% 0.783 +19.1% 0.706 +7.3%

0.1 0.989 0.993 +0.5% 0.998 +1.0% 0.999 +1.1% 0.987 -0.2%
schedule 0.5 0.976 0.978 +0.2% 0.981 +0.5% 0.990 +1.4% 0.962 -1.5%

0.9 0.790 0.767 -2.9% 0.752 -4.8% 0.848 +7.3% 0.745 -5.7%

0.1 0.992 0.996 +0.4% 0.999 +0.7% 0.999 +0.7% 0.981 -1.1%
schedule2 0.5 0.980 0.980 -0.1% 0.988 +0.8% 0.989 +0.9% 0.957 -2.4%

0.9 0.771 0.757 -1.8% 0.784 +1.7% 0.790 +2.5% 0.702 -8.9%

0.1 0.950 0.973 +2.5% 0.995 +4.8% 0.996 +4.8% 0.990 +4.2%
tcas 0.5 0.923 0.945 +2.4% 0.978 +5.9% 0.977 +5.9% 0.959 +3.9%

0.9 0.692 0.704 +1.6% 0.738 +6.7% 0.760 +9.8% 0.724 +4.6%

0.1 0.985 0.988 +0.3% 0.995 +1.0% 0.995 +1.0% 0.981 -0.4%
tot info 0.5 0.958 0.958 +0.0% 0.979 +2.3% 0.981 +2.4% 0.951 -0.7%

0.9 0.686 0.657 -4.2% 0.752 +9.7% 0.763 +11.3% 0.689 +0.5%

0.1 0.768 0.814 +6.0% 0.942 +22.6% 0.944 +22.9% 0.934 +21.6%
space 0.5 0.717 0.759 +5.9% 0.797 +11.1% 0.864 +20.6% 0.848 +18.3%

0.9 0.486 0.485 -0.2% 0.504 +3.7% 0.548 +12.6% 0.548 +12.6%

0.1 0.865 0.894 +3.4% 0.954 +10.4% 0.958 +10.8% 0.948 +9.6%
grep 0.5 0.812 0.830 +2.3% 0.896 +10.3% 0.915 +12.6% 0.905 +11.5%

0.9 0.515 0.450 -12.6% 0.498 -3.4% 0.616 +19.6% 0.612 +18.8%

0.1 0.733 0.847 +15.5% 0.951 +29.8% 0.951 +29.9% 0.947 +29.2%
gzip 0.5 0.658 0.751 +14.0% 0.784 +19.0% 0.796 +21.0% 0.798 +21.1%

0.9 0.392 0.454 +15.9% 0.459 +17.3% 0.519 +32.4% 0.514 +31.2%

0.1 0.876 0.938 +7.0% 0.989 +12.8% 0.989 +12.8% 0.982 +12.1%
sed 0.5 0.797 0.874 +9.7% 0.926 +16.2% 0.947 +18.8% 0.938 +17.6%

0.9 0.508 0.515 +1.4% 0.569 +12.1% 0.624 +22.7% 0.608 +19.6%

Table VIII. Failure detection performance (APFD) for the Siemens and SIR programs (higher is better)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RND ART ADDST FEP IG

h = 0.10

APFD 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RND ART ADDST FEP IG

h = 0.50

APFD 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RND ART ADDST FEP IG

h = 0.90

APFD

Figure 6. Failure detection performance (average, minimum and maximum APFD)

7.3. Question 3: Best Combined Performance

Table IX shows the average combined costs according to Copt per program, and the improvement

with respect to RND. The value marked in bold indicates the best performing technique or

techniques with a 95% confidence according to the Bonferroni mean separation test.

In our case, considering the QA cost as a whole, the number of tests required to reveal the presence

of a fault as measured by APFD is not the most relevant term, because in general, testing is an

automated process whereas debugging is a manual, cognitive process, and therefore much more

costly. This is reflected in the fact that ADDST and FEP have an increased cost over RND for

the Siemens programs of up to a 100%. Although faults are detected very early, the diagnostic

information gain is very limited given the extremely high coverage of the Siemens suites. Despite

the fact that IG needs more tests to detect the presence of a fault, this is more than compensated by

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

PRIORITIZING TESTS FOR SOFTWARE FAULT DIAGNOSIS 17

Program h̄ RND ART ADDST FEP IG

print tokens 0.10 39.984 33.493 -16.2% 71.799 +79.6% 80.482 +101.3% 23.694 -40.7%
print tokens 0.50 55.751 51.418 -7.8% 92.600 +66.1% 100.279 +79.9% 35.649 -36.1%
print tokens 0.90 106.126 108.209 +2.0% 143.941 +35.6% 122.225 +15.2% 81.155 -23.5%

print tokens2 0.10 55.738 50.693 -9.1% 70.732 +26.9% 84.858 +52.2% 39.435 -29.2%
print tokens2 0.50 72.831 66.606 -8.5% 90.113 +23.7% 113.134 +55.3% 51.902 -28.7%
print tokens2 0.90 110.392 109.328 -1.0% 144.369 +30.8% 127.497 +15.5% 93.334 -15.5%

replace 0.10 34.212 30.466 -10.9% 41.490 +21.3% 39.000 +14.0% 18.303 -46.5%
replace 0.50 47.322 51.855 +9.6% 61.667 +30.3% 58.399 +23.4% 32.469 -31.4%
replace 0.90 103.780 113.413 +9.3% 125.410 +20.8% 115.732 +11.5% 91.477 -11.9%

schedule 0.10 36.843 35.652 -3.2% 35.252 -4.3% 36.192 -1.8% 16.817 -54.4%
schedule 0.50 51.050 50.166 -1.7% 56.735 +11.1% 69.870 +36.9% 28.278 -44.6%
schedule 0.90 103.609 100.759 -2.8% 104.575 +0.9% 109.436 +5.6% 81.226 -21.6%

schedule2 0.10 43.867 39.972 -8.9% 55.025 +25.4% 57.051 +30.1% 20.083 -54.2%
schedule2 0.50 61.612 57.682 -6.4% 77.072 +25.1% 86.177 +39.9% 32.087 -47.9%
schedule2 0.90 89.861 85.545 -4.8% 92.685 +3.1% 105.775 +17.7% 73.278 -18.5%

tcas 0.10 27.843 26.186 -6.0% 36.908 +32.6% 36.735 +31.9% 23.850 -14.3%
tcas 0.50 36.251 35.652 -1.7% 48.520 +33.8% 49.482 +36.5% 31.085 -14.3%
tcas 0.90 58.005 58.095 +0.2% 63.191 +8.9% 61.558 +6.1% 55.745 -3.9%

tot info 0.10 37.838 35.975 -4.9% 36.270 -4.1% 42.405 +12.1% 22.154 -41.4%
tot info 0.50 61.647 52.176 -15.4% 51.907 -15.8% 62.925 +2.1% 33.676 -45.4%
tot info 0.90 100.772 103.413 +2.6% 90.214 -10.5% 103.082 +2.3% 75.929 -24.7%

space 0.10 201.949 165.473 -18.1% 112.843 -44.1% 106.193 -47.4% 83.717 -58.5%
space 0.50 289.821 225.540 -22.2% 182.047 -37.2% 174.910 -39.6% 158.270 -45.4%
space 0.90 875.710 861.108 -1.7% 1042.716 +19.1% 764.285 -12.7% 723.306 -17.4%

grep 0.10 244.828 201.240 -17.8% 161.051 -34.2% 148.324 -39.4% 118.051 -51.8%
grep 0.50 339.495 270.074 -20.4% 232.842 -31.4% 207.171 -39.0% 168.296 -50.4%
grep 0.90 1222.752 1515.065 +23.9% 1577.514 +29.0% 952.354 -22.1% 867.989 -29.0%

gzip 0.10 364.962 288.359 -21.0% 248.951 -31.8% 243.604 -33.3% 218.291 -40.2%
gzip 0.50 540.282 427.220 -20.9% 378.113 -30.0% 368.421 -31.8% 373.046 -31.0%
gzip 0.90 1297.090 980.563 -24.4% 985.323 -24.0% 885.160 -31.8% 867.261 -33.1%

sed 0.10 193.300 147.613 -23.6% 130.750 -32.4% 130.025 -32.7% 120.188 -37.8%
sed 0.50 303.200 262.788 -13.3% 243.287 -19.8% 230.550 -24.0% 220.688 -27.2%
sed 0.90 879.475 910.825 +3.6% 811.788 -7.7% 791.400 -10.0% 694.500 -21.0%

Table IX. Average combined performance Copt

the improved quality of diagnostic information, which at the optimal point can be over a 60% better

than RND.

As for Question 1, for the SIR programs we observe that the FEP and ADDST do not cause an

increased cost but a significant reduction with respect to RND. The reason is again caused by the

shape and sparsity of the matrices, and will be discussed in the next section.

7.4. Theoretical Analysis

Our experiments have revealed there is a difference between the behavior of the techniques for

the Siemens programs, and for the SIR programs. In this section we detail the reason behind this

difference.

To explain why for the SIR programs the performance of FEP and ADDST is close to IG, we

must consider the relationship between failure probability, Pr(oi) (which is directly correlated to

coverage) and information gain. The plot in Figure 7 shows all the possible spectrum of IG values.

However, not all of the possibilities are available depending on the shape of the matrix.

Siemens programs are small, and have very few functionalities and simple inputs. This makes

generating test cases that simultaneously cover most of the functionality (hence, the code) a

relatively easy task. This results in very dense test matrices, with very high failure probabilities

even if the FNR is high.

On the other hand, SIR programs are large and contain many different functionalities and

complex inputs. When creating test cases, testers choose inputs that test each of these functionalities

individually. This is done because it makes this (usually manual) task simpler, and because in case

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

18 A. GONZALEZ-SANCHEZ, ET. AL.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

IG

Pr(o = 1)

Information Gain Optimality Curve

coverage frontier

Figure 7. Information Gain as a function of failure probability

of failure, it can be directly related to the faulty functionality as it is being tested in isolation. The

resulting test matrices are close to diagonal.

In the case of the dense test matrices of the Siemens programs or the SIR programs for low

FNR, many of the tests will be located after the optimal IG value. In fact, many of them will

have such a high failure probability that the IG they provide will be almost zero. In their effort

to maximize failure probability, FEP and ADDST choose tests that fall far from the optimal point,

severely impacting their performance.

However, in the case of the SIR programs combined with a very high FNR (h = 0.9), most

of the tests will be located before the optimal IG value. This creates a coverage frontier, with

the consequence that no test can provide an IG value close or past the theoretical optimum. This

prevents FEP and ADDST from choosing non-optimal tests. In fact, it will cause FEP and ADDST

to choose tests close to optimal tests, since the best test will always be the test with the highest

failure probability (hence closer to the optimal) equaling the performance of IG in some cases. This

is also the reason why in Question 2 the APFD performance of IG and FEP are so similar for the

SIR programs.

7.5. Threats to Validity

The validity of our experiments is threatened by the subjects used in our study. One must consider

whether the test matrices A are representative of real programs, in both size and test composition.

Even though the Siemens set is widely used in literature, there are doubts to whether the programs

and test suites represent reality. For this reason we have included the larger programs of the SIR

repository. Their larger sizes and realistic test matrices strengthen the validity of our results.

Simulation of faults has enabled us to obtain a greater sample of faults per program. Without

additional faults, our experiments would not have enough statistical significance. However, it also

affects the validity of our results. Firstly, one must consider whether the distribution of faults (pj)

and false negative rates (hj) used in our experiments is valid. Secondly, as we used the same pj
and hj as input for the prioritization algorithm, our results show the performance of diagnostic

prioritization when it has the best information available. This is something to take into account

for its practical application. A validation involving a large sample of real or mutation faults would

strengthen the validity of our experiments by showing the performance of IG when faced with real

faults and imperfect FNR estimations. In the next section we will comment on how to obtain more

realistic values on practical settings, which can be used to obtain experimental results with stronger

validity, and what is the effect of errors in these estimations.

In previous literature, interface, type and variable declarations are considered in the component

ranking and the Cd metric, although their likelihoods are in most cases 0 because of the limitations

on the code instrumentation, which causes ∀i aij = 0. This is especially true in Spectrum-based

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

PRIORITIZING TESTS FOR SOFTWARE FAULT DIAGNOSIS 19

techniques [9, 10, 11]. As they are located at the bottom of the ranking, the number of inspected

components (the numerator in the diagnostic effort formula used in Section 7.1) does not change.

However, the denominator can be made arbitrarily large by adding static lines of code improving

Cd. Although this affects all techniques equally, the relative differences between them can be made

arbitrarily small. By not taking into account these columns in A where instrumentation is defective

we make the comparison of algorithms fairer.

With regard to our results in Question 3, the construct validity of the formula for C has to be

considered. Our formula considers that the cost of a test is equal to the cost of manually inspecting a

component (which can be seen as a sort of ‘test’ as well). Manual inspection (debugging) is usually

much more expensive than just testing, which means that our formula is actually pessimistic in

terms of the cost improvement we obtain with IG. Test cost increases linearly with each test, and the

return of that investment is an inverse exponential. To bias C towards test cost-centered techniques

(especially ADDST, FEP), the cost of a test would have to be disproportionately larger than the cost

of a manual inspection. On the other hand, if α was extremely large, the performance gain would be

comparable to the values obtained in Question 1.

8. PRACTICAL CONSIDERATIONS

In this section we will discuss some practical applicability issues of diagnostic test prioritization.

Concretely, we will comment on how to obtain the input parameters needed for the algorithm and

how to control the overhead caused by online prioritization, since the test choice has to be done

during the testing phase for every testing phase.

8.1. Determination of the Input Parameters

Crucial to the applicability of diagnostic prioritization is the determination of all the required

inputs. In this section we will comment on how to practically obtain the test matrix A, prior fault

probabilities pk, and fault intermittencies hk.

For our study, coverage matrices A were obtained by instrumenting each of the programs at

statement level with Zoltar, a spectrum-based fault localization tool set [28]. However, it must

be taken into account that the coverage of a test input can vary between regression cycles. This will

not affect diagnostic accuracy as diagnosis is performed a posteriori when the updated coverage

is already available. However, it can affect the accuracy of prioritization heuristics such as FEP,

ART or IG as the coverage of a test case is needed a priori. This deviation should be taken into

account, by using techniques for estimating the updated coverage of a test input [29]. This situation

is generally overlooked in test prioritization literature [2, 4, 6].

Prior fault probabilities, pk, are typically derived from defect density data. It is safe to assume

equal valued priors. The prior distribution has been shown not to be very critical to diagnostic

performance [10] as it is adjusted during the diagnosis process by the Bayesian update formula

(Equation 2). On the other hand, the FNR hk is not corrected during diagnosis, and, in fact, the

accuracy of the diagnosis itself depends greatly on accurate FNR estimations [10, 30]. False negative

rates in software diagnosis are intimately connected with the concept of testability, as defined by

Voas and Miller [31]: the degree to which software reveals faults during testing. Testability can be

modeled by the so-called propagation, infection, execution approach (PIE) [32]. For the estimation

of the FNR value hk, a variation of the PIE testability can be used, following the approach in [6].

The cost of this study is expensive in terms of execution time. Fortunately however, the high cost

of FNR analysis is amortized over many code commit and regression test cycles. Other approaches

based on static analysis, such as [33, 34, 35, 36, 37] have been suggested, however their practical

application for diagnosis or prioritization has not been demonstrated.

8.2. Sensitivity to Estimation Errors

The diagnostic precision of Bayesian diagnosis and diagnostic prioritization depends on how well

the hk values are estimated (similar to the estimation problem in FEP). The average number of

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

20 A. GONZALEZ-SANCHEZ, ET. AL.

h̄ = 0.10 h̄ = 0.50 h̄ = 0.90
Program σ RND IG RND IG RND IG

0.10 0.037 0.022 -40.9% 0.066 0.041 -38.0% 0.181 0.173 -4.1%
print tokens 0.25 0.040 0.024 -38.6% 0.074 0.049 -33.4% 0.213 0.213 -0.0%

0.50 0.043 0.032 -25.1% 0.090 0.071 -21.7% 0.220 0.254 +15.6%

0.10 0.049 0.036 -27.1% 0.084 0.063 -25.4% 0.206 0.205 -0.3%
print tokens2 0.25 0.052 0.040 -22.4% 0.102 0.072 -29.6% 0.277 0.271 -1.9%

0.50 0.066 0.049 -25.5% 0.124 0.105 -15.1% 0.301 0.310 +2.9%

0.10 0.028 0.018 -35.5% 0.056 0.035 -37.9% 0.202 0.184 -9.3%
replace 0.25 0.029 0.018 -37.4% 0.059 0.038 -34.7% 0.228 0.208 -8.8%

0.50 0.033 0.021 -37.3% 0.077 0.051 -33.5% 0.232 0.222 -4.5%

0.10 0.045 0.018 -59.6% 0.079 0.035 -56.2% 0.261 0.194 -25.7%
schedule 0.25 0.047 0.019 -59.8% 0.113 0.042 -62.8% 0.330 0.250 -24.3%

0.50 0.048 0.020 -58.4% 0.146 0.074 -49.4% 0.310 0.245 -20.9%

0.10 0.074 0.028 -62.3% 0.125 0.058 -53.4% 0.275 0.216 -21.3%
schedule2 0.25 0.072 0.028 -60.9% 0.155 0.066 -57.4% 0.305 0.242 -20.4%

0.50 0.092 0.033 -63.7% 0.171 0.085 -50.5% 0.319 0.269 -15.7%

0.10 0.076 0.065 -13.7% 0.124 0.112 -9.1% 0.223 0.223 +0.1%
tcas 0.25 0.078 0.072 -8.3% 0.138 0.133 -4.2% 0.264 0.284 +7.6%

0.50 0.094 0.090 -4.4% 0.155 0.149 -4.0% 0.270 0.273 +1.3%

0.10 0.045 0.027 -39.1% 0.088 0.051 -42.3% 0.248 0.209 -15.5%
tot info 0.25 0.045 0.029 -36.5% 0.099 0.058 -41.5% 0.279 0.239 -14.2%

0.50 0.048 0.031 -35.2% 0.138 0.096 -30.6% 0.262 0.256 -2.4%

0.10 0.043 0.016 -62.1% 0.067 0.035 -47.2% 0.194 0.213 +9.7%
space 0.25 0.044 0.017 -62.0% 0.071 0.039 -45.0% 0.210 0.253 +20.6%

0.50 0.044 0.020 -55.5% 0.084 0.062 -26.9% 0.230 0.261 +13.8%

0.10 0.036 0.017 -54.1% 0.055 0.029 -47.0% 0.227 0.183 -19.7%
grep 0.25 0.034 0.016 -52.1% 0.063 0.032 -48.5% 0.266 0.243 -8.9%

0.50 0.035 0.019 -46.8% 0.076 0.050 -34.2% 0.271 0.259 -4.3%

0.10 0.076 0.036 -53.0% 0.106 0.064 -39.8% 0.248 0.202 -18.4%
gzip 0.25 0.079 0.036 -53.9% 0.111 0.067 -39.6% 0.266 0.218 -18.0%

0.50 0.184 0.095 -48.6% 0.120 0.083 -31.4% 0.281 0.234 -16.8%

0.10 0.045 0.023 -49.4% 0.076 0.041 -46.5% 0.219 0.200 -8.6%
sed 0.25 0.045 0.022 -51.0% 0.081 0.045 -44.0% 0.251 0.236 -6.1%

0.50 0.151 0.087 -42.6% 0.089 0.053 -40.2% 0.266 0.271 +1.8%

Table X. Sensitivity of IG to errors in the estimation of FNR

tests needed to exonerate a healthy component is 1/(1− hk), which starts affecting diagnostic

performance when hk is close to 1, since small errors in hk translate into very large errors in the

number of tests. Since our simulation experiments were performed using correct hk values, the

validity of our results is threatened since the practical applicability of the method is not guaranteed.

We performed a simple experiment using the matrix of all our evaluation programs, by adding

random noise to hk with a deviation of σ = 10, 25, 50%, averaged over 500 runs. Three different

average FNR scenarios were used: low h̄ = 0.1, high h̄ = 0.5, and very high h̄ = 0.9.

Table X shows the results of our sensitivity study. Values in bold indicate the cases where IG is

affected up to the point that it performs worse than RND.

The results show that for low and intermediate FNR, IG is not affected to a great extent, although

it shows an increasing trend with noise. On the other hand, the choices made by IG can be severely

impacted by even small errors in the estimation of hk if the real FNR is very high. This is can be

seen in the extremely poor performance of IG for tcas and space. The construction of the matrix

has, again, an influence. The robustness of IG to error is higher in some cases, such as schedule2

shows.

8.3. Reduction of the Prioritization Overhead

As on-line prioritization has to be recalculated for each test cycle, the time overhead imposed by the

algorithm is a critical success factor in this approach to QA.

For the coverage matrix of print tokens (N = 4130×M = 563), selecting a test takes in our

(non-optimized) experimental platform approximately 1s of CPU time. For comparison, ART takes

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

PRIORITIZING TESTS FOR SOFTWARE FAULT DIAGNOSIS 21

an average of 20ms per test. This overhead can be partially compensated if the next case can be pre-

computed in parallel with the test being executed. It must be taken into account that it is necessary

to speculatively pre-compute the next test for both possibilities of the yet unknown outcome, which

requires twice the time.

Another simple approach for reducing complexity is to collapse tests with identical coverage into

a single one. Even though this approach provides a degree of reduction (in the test matrices used in

Section 6 the matrix is reduced to approximately of a 50% of its rows), this only represents halving

the time required per test case.

Finally, just as ART uses random sampling of the test suite per step, a similar approach can

be used for IG. The reason is that there is a large redundancy in the test matrix A due to an

excessive number of tests providing almost no information gain. A random sample of tests reduces

this redundancy while maintaining performance as good as if no sampling was performed. The

reduction in test selection time achievable by random sampling depends on the sampling method

used, but is of at least an order of magnitude or more. We performed a trial run where we sampled

100 tests per step (from tests matrices of up to 5,000 tests), yielding a 50-fold reduction of the time

required per test case, reducing the time it takes to select a test using IG to a mere 20ms, similar to

ART, while IG’s diagnostic performance was not affected.

9. RELATED WORK

The influence of test-suite extension, reduction, modification, and prioritization on fault detection

and diagnosis has received considerable attention.

Hao et al. [38] study the effect of reduction of redundant tests on the Tarantula fault detection

algorithm [11], concluding that reduction may actually have a beneficial effect on diagnosis.

However, their conclusions partially contradict those of Yu et al. [16] for a larger sample of

programs, who conclude that test-suite reduction, especially coverage-based reduction, has a

negative influence on the quality of the diagnosis. In particular, Jiang et al. [15] show how some

prioritization techniques are worse than random sequencing and that those that are better, do not

provide a significant improvement.

In contrast to the works cited above, which use coverage-based heuristics to reduce the size of

the test suite, diagnostic prioritization employs a heuristic to select the best test case to optimize

diagnostic accuracy.

Baudry et al. [39] propose enhancing test suites by adding new tests that increase the number

of dynamic basic blocks (i.e., sets of components that are always covered together), thus reducing

diagnostic uncertainty. The additional tests created by this technique are subject to prioritization

as well, and thus there is no guarantee they will be ordered appropriately, unless diagnostic

prioritization is used.

Test case prioritization is a mature and active area of research whose most common goal is to

increase failure detection rate. Harrold et al. [3] and Wong et al. [8] proposed to use reduction

and prioritization as a means of controlling the size of regression test suites. The failure detection

effectiveness of different coverage-based prioritization techniques was studied by Rothermel et

al. [2], who also proposed the FEP heuristic [6] that has already been discussed throughout the

paper. Cost-cognizant test prioritization techniques have been proposed [40, 7, 41] that take into

account that test cases may have variable costs. Elbaum et al. propose a set of guidelines [1] to

aid in selecting the most cost-effective prioritization technique depending on program attributes.

Li et al. [5] study different search algorithms for coverage-based prioritization in order to avoid

the local minimal of greedy strategies [6]. Jiang et al. [4] propose a hybrid random and coverage-

based prioritization technique (ART), which has already been discussed throughout this paper. Kim

and Baik propose a fault-aware test case prioritization (FATCP) [42] that combines a diagnostic

algorithm with coverage-based test prioritization with the goal of producing failures as soon

as possible, under the assumption that faulty components that were fixed are less likely to be

faulty again in a subsequent cycle. Unlike our diagnostic prioritization algorithm, all traditional

prioritization research centers around faster fault detection (APFD). As shown in this article,

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

22 A. GONZALEZ-SANCHEZ, ET. AL.

focusing on a faster rate of fault detection may have a very negative impact on fault localization

cost.

Automated fault-localization techniques also aim at minimizing diagnostic cost when failures

occur during the testing phase. Statistical approaches include the Tarantula tool by Jones et al. [11],

Ochiai by Abreu et al. [9], the Nearest Neighbor technique by Renieris et al. [22], Sober by Liu et

al. [21], CBI by Liblit and his colleagues [20], and CrossTab by Wang et al. [25]. Approaches to

statistical fault localization need not be limited to the statement level, work that considers execution

paths and dependences includes [19, 23, 24, 43].

Recently, Abreu et al. [10] proposed Barinel, which aimed to combine the best of reasoning and

statistical approaches. Although differing in the way they derive the fault ranking, all techniques are

based on measuring the coverage information and failure pattern of a program (also known as its

spectrum). Nica et al. [44] use mutation testing to reduce the amount of diagnosis candidates in the

ranking.

A preliminary version of our work is described in [14], that reveals the high potential of

(IG-based) dynamic prioritization. However, in that work we assumed permanent failures, which

is completely unrealistic for real software systems. Diagnostic prioritization is often applied to

hardware systems, where it is known as Sequential Diagnosis, where tests can produce false

negatives (intermittent faults) [12]. Typically, only one fault is assumed present in the system.

Sequential diagnosis can be enhanced by the use of models and test case generation (instead of

choosing from a fixed test suite), greatly increasing its performance [13, 45]. However, the practical

application of these approaches depends on the availability of accurate models, which seldom exist

for software systems due to their complexity and constant evolution.

10. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a specific prioritization technique of test cases, dubbed diagnostic

prioritization, that reduces the loss of diagnostic information to a minimum. Our experiments have

shown that in terms of diagnostic information gain per test case, diagnostic prioritization is the best

technique. This comes at the price of a slightly reduced APFD failure detection performance with

respect to additional-coverage techniques, although not in all cases. However, when considering the

overall combined cost of both testing and manual residual diagnosis, our experiments have shown

cost reduction of up to 60% with respect to the next best performing technique.

In future work we will extend the validation of our approach to larger systems with multiple

faults, a more realistic scenario in software. We will also explore the performance of our approach

at different levels of granularity, such as interface, and component-level granularities. We will also

consider different strategies to overcome errors in the estimation of the input parameters (hk, pk) of

IG, since our sensitivity study showed that IG can be affected negatively in some cases. Additionally,

we will consider the fact that different tests may have different costs, and propose new heuristics to

address this situation.

ACKNOWLEDGEMENTS

The authors wish to thank their partners in the Poseidon project in the Embedded Systems Institute (ESI).
This project is partially supported by the Dutch Ministry of Economic Affairs under the BSIK03021
program. We would also like to thank our anonymous reviewers for their helpful comments and insights,
which greatly improved the quality of this paper.

REFERENCES

1. Elbaum S, Rothermel G, Kanduri S, Malishevsky AG. Selecting a cost-effective test case prioritization technique.
Software Quality Control 2004; 12(3):185–210, doi:http://dx.doi.org/10.1023/B:SQJO.0000034708.84524.22.

2. Elbaum S, Malishevsky AG, Rothermel G. Test case prioritization: A family of empirical studies. IEEE
Transactions on Software Engineering 2002; 28(2):159–182, doi:http://dx.doi.org/10.1109/32.988497.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

PRIORITIZING TESTS FOR SOFTWARE FAULT DIAGNOSIS 23

3. Harrold MJ, Gupta R, Soffa ML. A methodology for controlling the size of a test suite. ACM Transactions on
Software Engineering Methodology 1993; 2(3):270–285, doi:http://doi.acm.org/10.1145/152388.152391.

4. Jiang B, Zhang Z, Chan WK, Tse TH. Adaptive random test case prioritization. ASE ’09: Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering, IEEE Computer Society: Washington,
DC, USA, 2009; 233–244, doi:http://dx.doi.org/10.1109/ASE.2009.77.

5. Li Z, Harman M, Hierons RM. Search algorithms for regression test case prioritization. IEEE Transactions on
Software Engineering 2007; 33(4):225–237, doi:http://dx.doi.org/10.1109/TSE.2007.38.

6. Rothermel G, Untch RJ, Chu C. Prioritizing test cases for regression testing. IEEE Transactions on Software
Engineering 2001; 27(10):929–948, doi:http://dx.doi.org/10.1109/32.962562.

7. Smith AM, Kapfhammer GM. An empirical study of incorporating cost into test suite reduction and prioritization.
SAC ’09: Proceedings of the 2009 ACM symposium on Applied Computing, ACM: New York, NY, USA, 2009;
461–467, doi:http://doi.acm.org/10.1145/1529282.1529382.

8. Wong WE, Horgan JR, London S, Bellcore HA. A study of effective regression testing in practice. ISSRE ’97:
Proceedings of the Eighth International Symposium on Software Reliability Engineering, IEEE Computer Society:
Washington, DC, USA, 1997; 264.

9. Abreu R, Zoeteweij P, van Gemund AJC. On the accuracy of spectrum-based fault localization. TAICPART-
MUTATION ’07: Proceedings of the Testing: Academic and Industrial Conference Practice and Research
Techniques - MUTATION, IEEE Computer Society: Washington, DC, USA, 2007; 89–98.

10. Abreu R, Zoeteweij P, Gemund AJCv. Spectrum-based multiple fault localization. ASE ’09: Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering, IEEE Computer Society: Washington,
DC, USA, 2009; 88–99, doi:http://dx.doi.org/10.1109/ASE.2009.25.

11. Jones JA, Harrold MJ, Stasko J. Visualization of test information to assist fault localization. ICSE ’02: Proceedings
of the 24th International Conference on Software Engineering, ACM: New York, NY, USA, 2002; 467–477, doi:
http://doi.acm.org/10.1145/581339.581397.

12. Raghavan V, Shakeri M, Pattipati K. Test sequencing algorithms with unreliable tests. Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Transactions on jul 1999; 29(4):347 –357, doi:
10.1109/3468.769753.

13. Feldman A, Provan G, Van Gemund A. Fractal: efficient fault isolation using active testing. IJCAI’09: Proceedings
of the 21st international joint conference on Artifical intelligence, Morgan Kaufmann Publishers Inc.: San
Francisco, CA, USA, 2009; 778–784.

14. Gonzalez-Sanchez A, Piel E, Gross HG, van Gemund AJ. Prioritizing tests for software
fault localization. IEEE Computer Society: Los Alamitos, CA, USA, 2010; 42–51, doi:
http://doi.ieeecomputersociety.org/10.1109/QSIC.2010.28.

15. Jiang B, Zhang Z, Tse TH, Chen TY. How well do test case prioritization techniques support statistical
fault localization. COMPSAC ’09: Proceedings of the 2009 33rd Annual IEEE International Computer
Software and Applications Conference, IEEE Computer Society: Washington, DC, USA, 2009; 99–106, doi:
http://dx.doi.org/10.1109/COMPSAC.2009.23.

16. Yu Y, Jones JA, Harrold MJ. An empirical study of the effects of test-suite reduction on fault localization. ICSE
’08: Proceedings of the 30th international conference on Software engineering, ACM: New York, NY, USA, 2008;
201–210, doi:http://doi.acm.org/10.1145/1368088.1368116.

17. Hutchins M, Foster H, Goradia T, Ostrand T. Experiments of the effectiveness of dataflow- and controlflow-based
test adequacy criteria. ICSE ’94: Proceedings of the 16th international conference on Software engineering, IEEE
Computer Society Press: Los Alamitos, CA, USA, 1994; 191–200.

18. Do H, Elbaum S, Rothermel G. Supporting controlled experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Softw. Engg. 2005; 10(4):405–435, doi:http://dx.doi.org/10.1007/s10664-005-
3861-2.

19. Baah GK, Podgurski A, Harrold MJ. The probabilistic program dependence graph and its application to fault
diagnosis. ISSTA ’08: Proceedings of the 2008 international symposium on Software testing and analysis, ACM:
New York, NY, USA, 2008; 189–200, doi:http://doi.acm.org/10.1145/1390630.1390654.

20. Liblit B. Cooperative debugging with five hundred million test cases. ISSTA ’08: Proceedings of the 2008
international symposium on Software testing and analysis, ACM: New York, NY, USA, 2008; 119–120, doi:
http://doi.acm.org/10.1145/1390630.1390632.

21. Liu C, Yan X, Fei L, Han J, Midkiff SP. Sober: statistical model-based bug localization. ESEC/FSE-13:
Proceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering, ACM: New York, NY, USA, 2005; 286–295,
doi:http://doi.acm.org/10.1145/1081706.1081753.

22. Renieris M, Reiss SP. Fault localization with nearest neighbor queries. Automated Software Engineering,
International Conference on 2003; 0:30, doi:http://doi.ieeecomputersociety.org/10.1109/ASE.2003.1240292.

23. Santelices R, Jones JA, Yu Y, Harrold MJ. Lightweight fault-localization using multiple coverage types. ICSE ’09:
Proceedings of the 31st International Conference on Software Engineering, IEEE Computer Society: Washington,
DC, USA, 2009; 56–66, doi:http://dx.doi.org/10.1109/ICSE.2009.5070508.

24. Wang X, Cheung SC, Chan WK, Zhang Z. Taming coincidental correctness: Coverage refinement
with context patterns to improve fault localization. ICSE ’09: Proceedings of the 31st International
Conference on Software Engineering, IEEE Computer Society: Washington, DC, USA, 2009; 45–55, doi:
http://dx.doi.org/10.1109/ICSE.2009.5070507.

25. Wong E, Wei T, Qi Y, Zhao L. A crosstab-based statistical method for effective fault localization. ICST ’08:
Proceedings of the 2008 International Conference on Software Testing, Verification, and Validation, IEEE Computer
Society: Washington, DC, USA, 2008; 42–51, doi:http://dx.doi.org/10.1109/ICST.2008.65.

26. Shakeri M, Raghavan V, Pattipati K, Patterson-Hine A. Sequential testing algorithms for multiple fault diagnosis.
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on jan 2000; 30(1):1 –14, doi:
10.1109/3468.823474.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

24 A. GONZALEZ-SANCHEZ, ET. AL.

27. Johnson R. An information theory approach to diagnosis. Symposium on Reliability and Quality Control, 1960.
28. Janssen T, Abreu R, Gemund AJCv. Zoltar: A toolset for automatic fault localization. ASE ’09: Proceedings

of the 2009 IEEE/ACM International Conference on Automated Software Engineering, IEEE Computer Society:
Washington, DC, USA, 2009; 662–664, doi:http://dx.doi.org/10.1109/ASE.2009.27.

29. Chittimalli PK, Harrold MJ. Recomputing coverage information to assist regression testing. IEEE Transactions in
Software Engineering 2009; 35(4):452–469, doi:http://dx.doi.org/10.1109/TSE.2009.4.

30. De Kleer J. Diagnosing multiple persistent and intermittent faults. IJCAI’09: Proceedings of the 21st international
jont conference on Artifical intelligence, Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2009; 733–
738.

31. Voas JM, Miller KW. Software testability: The new verification. IEEE Software 1995; 12(3):17–28, doi:
http://dx.doi.org/10.1109/52.382180.

32. Voas JM. Pie: A dynamic failure-based technique. IEEE Transactions on Software Engineering 1992; 18(8):717–
727, doi:http://dx.doi.org/10.1109/32.153381.

33. Freedman RS. Testability of software components. IEEE Transactions in Software Engineering 1991; 17(6):553–
564, doi:http://dx.doi.org/10.1109/32.87281.

34. Offutt AJ, Hayes JH. A semantic model of program faults. SIGSOFT Software Engineering Notes 1996; 21(3):195–
200, doi:http://doi.acm.org/10.1145/226295.226317.

35. Voas JM, Miller KW. Semantic metrics for software testability. Journal of Systems and Software 1993; 20(3):207–
216, doi:http://dx.doi.org/10.1016/0164-1212(93)90064-5.

36. Woodward MR, Al-Khanjari ZA. Testability, fault size and the domain-to-range ratio: An eternal triangle. SIGSOFT
Software Engineering Notes 2000; 25(5):168–172, doi:http://doi.acm.org/10.1145/347636.349016.

37. Zhao L. A new approach for software testability analysis. ICSE ’06, ACM: New York, NY, USA, 2006; 985–988,
doi:http://doi.acm.org/10.1145/1134285.1134469.

38. Hao D, Zhang L, Zhong H, Mei H, Sun J. Eliminating harmful redundancy for testing-based fault localization
using test suite reduction: An experimental study. ICSM ’05: Proceedings of the 21st IEEE International
Conference on Software Maintenance, IEEE Computer Society: Washington, DC, USA, 2005; 683–686, doi:
http://dx.doi.org/10.1109/ICSM.2005.43.

39. Baudry B, Fleurey F, Le Traon Y. Improving test suites for efficient fault localization. ICSE ’06: Proceedings
of the 28th international conference on Software engineering, ACM: New York, NY, USA, 2006; 82–91, doi:
http://doi.acm.org/10.1145/1134285.1134299.

40. Elbaum S, Malishevsky A, Rothermel G. Incorporating varying test costs and fault severities into test case
prioritization. ICSE ’01: Proceedings of the 23rd International Conference on Software Engineering, IEEE
Computer Society: Washington, DC, USA, 2001; 329–338.

41. Zhang L, Hou SS, Guo C, Xie T, Mei H. Time-aware test-case prioritization using integer linear programming.
ISSTA ’09: Proceedings of the eighteenth international symposium on Software testing and analysis, ACM: New
York, NY, USA, 2009; 213–224, doi:http://doi.acm.org/10.1145/1572272.1572297.

42. Kim S, Baik J. An effective fault aware test case prioritization by incorporating a fault localization technique.
ESEM ’10: Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, ACM: New York, NY, USA, 2010; 1–10, doi:http://doi.acm.org/10.1145/1852786.1852793.

43. Chilimbi TM, Liblit B, Mehra K, Nori AV, Vaswani K. Holmes: Effective statistical debugging via efficient path
profiling. ICSE ’09: Proceedings of the 31st International Conference on Software Engineering, IEEE Computer
Society: Washington, DC, USA, 2009; 34–44, doi:http://dx.doi.org/10.1109/ICSE.2009.5070506.

44. Nica M, Nica S, Wotawa F. Does testing help to reduce the number of potentially faulty statements in debugging?
Testing Practice and Research Techniques, Lecture Notes in Computer Science, vol. 6303, Bottaci L, Fraser G
(eds.). Springer Berlin / Heidelberg, 2010; 88–103, doi:http://dx.doi.org/10.1007/978-3-642-15585-7.

45. Pietersma J, van Gemund A, Bos A. A model-based approach to sequential fault diagnosis - a best student paper
award winner at ieee autotestcon 2005. Instrumentation Measurement Magazine, IEEE april 2007; 10(2):46 –52,
doi:10.1109/MIM.2007.364961.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

