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Abstract— With the advent of multi-processor Systems-on-
Chip (MpSoC), the need for modeling the distribution of a paral-
lel application onto a parallel hardware architecture is increasing.
The recent standard profile for the modeling and analysis of real-
time and embedded systems (MARTE) provides a notation for
the modeling of regular distributions. This notation allows to
distribute computations to processing elements, data to shared
or distributed memories, etc. In this paper we will highlight
the expressivity of this notation and clarify its usage through
examples and comparisons to other distribution notations such
as in High Performance Fortran.

I. I

As the number of transistors available on a chip keeps
increasing, the trend to increase the processing power on a
chip is to use more and more cores. The only scalable way to
do this is to reuse several times the same core and to organize
these cores in a regular way. Several of such regular massively
parallel architectures already exist [1]–[6].

The usage of massively parallel architectures requires that
designers are able to manage task and data distributions over
parallel processors and memories. This requirement is shared
with the High Performance Computing field. High Performance
Fortran [7] (HPF) proposes some techniques to express the
distributions. An HPF compilation directive specifies to the
compiler a way to map data to processors (and indirectly the
nearest memory). This distribution directive allocates each
array element to an owner. Then the owner-compute rule is
applied: the owner executes each program block which affects
its owned elements.

The UML profile for the modeling and analysis of real-
time and embedded systems (MARTE [8], [9]) proposes
some notations to define repetitive structures. This notation
is based on the proposal of Cuccuru et al. [10] and extends
the multiplicity mechanism of UML to give a shape to the
potential instances of a multiplicity element. This notation has
been used successfully to model data-parallel applications and
repetitive hardware such as grids of processors, multi-bank
shared memories or interconnection Networks-on-Chip [11].
The MARTE profile also proposes a notation for the distribution
of such data-parallel applications onto such repetitive hardware.
We will highlight the expressivity of this notation and clarify its
usage through examples and comparisons to other distribution
notations such as in High Performance Fortran.

II. A

The MARTE profile enables Systems-on-Chips (SoCs) co-
design. Co-design consists in designing the application and the
execution platform (hardware) separately at first. Once they

are sufficiently developed, a mapping of the application onto
the execution platform is performed in order to represent the
complete system. The MARTE profile allows to model both
applications and execution platforms. A MARTE application
element may be any UML element suitable for modeling
an application, with structural and behavioral aspects. The
structural aspect represents the static organization of the
elements, basically expressed by resources. The behavioral
aspect corresponds to the evolution of the system with the time,
commonly expressed by services. An application element could
be a computation, a service, or even a Real-Time Operating
System (RTOS) function. A MARTE execution platform
is composed of a set of connected resources representing
the System-on-Chip hardware architecture. It is composed
of « HW_Resource » such as computing resource (processor,
hardware accelerator), storage resource (cache, ROM or RAM)
and communication devices (Bus, Bridge and I/O devices).

Once the application and the hardware architecture have
been modeled, one should specify how the applications will be
executed on the execution platform. The mapping of application
tasks onto the adapted execution platform is an important
point of real-time embedded system design. It has a strong
influence on the performance and also plays a role in the power
consumption. To be able to chose the optimal mapping, several
possibilities may have to be tested and compared.

Fig. 1: Allocation of a computation task on a processing resource

In the MARTE profile, the mechanism to specify the mapping
is called allocation: a MARTE allocation is an association
between a MARTE application and a MARTE execution
platform. The set of all the allocations of the model defines
the mapping. The main concept of allocation is « Allocate »,
it is used for associating elements from a logical context,
application model elements, to named elements described in a



more physical context, execution platform model elements.
An example of allocation is given in Figure 1. The part iS,

instance of the ImageSegmentation component, is allocated onto
an instance of the MIPS processor of the hardware architecture.

Different kinds of allocation are defined: structural, be-
havioral and hybrid. An allocation of a group of structural
application elements on a group of resource is a structural
allocation. A behavioral allocation is an allocation of a set of
behavioral elements on a service provided by the execution
platform. An allocation is called hybrid when the application
end is behavioral while the execution platform end is structural.
This can be used when the execution platform resource provides
only one service and this service is implicit, the application
service is then allocated on this implicit service.

Allocation can represent either a spatial placement or a
temporal placement. Spatial placement is the allocation of
computations to processing resources, data to memories at
specific ranges of addresses, and of dependencies between
SW_Resources to communication resources. Temporal place-
ment is the scheduling of a set of elements spatially allocated
to the same platform resource. For instance, several tasks can
be scheduled on a processor, or a range of memory addresses
can be used at different times to hold different data.

An allocation is valid if both spatial and temporal allocations
are consistent. Moreover, there should not be any contradictions
between the constraints imposed by the allocation, and the
structure and behavior internal to the application or to the
execution platform. In particular, allocations must comply with
associations and dependencies of each model. For instance, two
communicating application elements should not be mapped on
two disconnected parts of the execution platform.

In general, there exist potentially plenty of mapping of a
given application onto an execution platform. Once a global
mapping has been defined, it can be refined in order to find
the best allocation of each element, and thus we obtain the
best performance and the optimal execution of the application
on the hardware.

III. R

The Repetitive Structure Modeling annex of MARTE defines
stereotypes and notations to describe in a compact way the
regularity of a system’s structure or topology. The structures
considered are composed of repetitions of structural elements
interconnected via a regular connection pattern. It provides
the designer a way to express models efficiently and explicitly
with a high number of identical components.

A. Shaped multiplicities

When a modeling element has a multiplicity of a fixed
integer, n, it can be seen as a collection of n potential elements.
With the MARTE profile, these n elements can be organized
as a multidimensional array. The shape of this array (number
of elements on each dimension) is then specified in the shape
tagged value of the « shaped » stereotype. The type of the
shape attribute is ShapeSpecification which is a data type
corresponding to a vector of unlimited naturals. One can thus

consider a collection of 100 components as an array of 5 × 20
components by specifying a shape of {5, 20} using the Value
Specification Language of MARTE. For simplicity, instead
of using the « shaped » stereotype, the user can write the
shape in place of the multiplicity. Whenever a multiplicity
is between curly brackets, it has to be understood as a shape
specification. Using this notation, one can give the shape of
data arrays, of repetitions of application components or of
hardware components, etc. Figure 6 shows the use of shape
to express an execution platform made of a grid of 16 × 16
processing unit with only one component to represent the 256
processing units.

B. Repetitive connectors

The second aspect of the RSM package concerns a way to
add topological information on relations expressed between
design-time entities in order to specify the topologies of links
that will exist between run-time entities in the context of these
relations.

The design idea is to identify sub-arrays, called patterns,
of points inside each array (defined by a shape specification),
and then to relate the points (i.e. link ends) contained in these
patterns. The considered patterns are multidimensional arrays,
and thus they are described by a shape similarly to the other
arrays. We call tile a pattern when it is considered as a set of
points of an array. The considered tiles are sets of regularly
spaced points and the tiles themselves are regularly spaced in
the array. The description of the regular spacing of the points
of a tile is called fitting and the description of the regular
spacing of the tiles in the array is called paving. The complete
description of the tiling of an array by tiles necessitates the
description of the shape of the pattern, the fitting, the paving,
an origin and a repetition space. The repetition space gives
the number of tiles. It is itself characterized by a shape. An
example is given in Figure 2, a tile corresponding to a pattern
of 3 × 2 elements is positioned on an array of 6 × 4 elements.
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Fig. 2: A sparse tile aligned on the abscissa and shifted by one on the ordinate
of the array.

The fitting describes the coordinates of the points of the
tile in the array relatively to a reference point. The paving
describes the set of reference points of the tiles relatively to the
origin. So the origin is the point of index [0, . . . , 0] of the tile
of index [0, . . . , 0] in the repetition space. The tiling process is
described by a TilerSpecification having three attributes: origin,
a Vector of Integers, fitting, a Matrix of Integers and paving,
a Matrix of Integers. The points of the tile of index r in the
repetition space are enumerated as follows: Given the point
of index i in the pattern, the coordinates of the corresponding
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Fig. 3: This figure represents the tiles for all the repetitions in the repetition space, indexed by r. The paving vectors drawn from the origin o indicate how the
coordinates of the reference element of the current tile are computed. Here the array is tiled row by row.

point in the array is

origin +
(
paving fitting

)
×
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r
i

)
mod array_shape . (1)

This formula ensures that:
• the points of the tile are regularly spaced because they

are built from the reference point of the tile by the linear
combination of the column vectors of the fitting matrix,

• the reference points of the tiles are regularly spaced
because they are built by the linear combination of the
column vectors of the paving matrix,

• all the points of the tiles are points of the array thanks to
the computation modulo the shape of the array.

This is strongly inspired by the Array-OL language [12]. The
usage of paving to browse the whole array using a tile is shown
in Figure 3.

Several stereotypes using this idea are proposed in MARTE,
all of them are specializations of the « LinkTopology » ab-
stract stereotype: « Tiler », « Reshape », « InterRepetition » and
« DefaultLink ». The purpose of this paper is not to describe
precisely the semantics of these stereotypes, it is done in the
MARTE standard and in [12] for the underlying language,
Array-OL. We will describe below the formal semantics of
the « Distribute » stereotype which is identical to that of the
« Reshape » stereotype.

IV. D

A « Distribute » stereotyped link proposes a way to express
regular (e.g. block, cyclic, k-cyclic) distributions from an array
of elements to another array of elements. It is an extension of
the allocation mechanism described above designed to handle
the repetitive structures.

A. Semantics

A « Distribute » stereotype specification has to define the fol-
lowing tagged values: patternShape, repetitionSpace, fromTiler
and toTiler. PatternShape is a ShapeSpecification defining
the shape of a pattern that will be used to tile both linked
arrays of elements. The repetitionSpace is a ShapeSpecification
that defines the shape of the collection of links between
tiles defined by the distribution. The fromTiler and toTiler
TilerSpecifications define how the source and destination arrays
of elements of the link are tiled.

Let us give some notations to all these data. Let sp be the
pattern shape; sR the repetition space shape; s f and st the shapes
of the from and to arrays; (o f , Ff , Pf ) and (ot, Ft, Pt) the from

and to tiler specifications. The potential link instances can be
seen as a mathematical relation, →, between the elements of
the from array, F , and those of the to array, T . This relation
is defined as follows.

∀ef ∈ N
dim(sf ), 0 ≤ ef < sf ,∀et ∈ N

dim(st), 0 ≤ et < st,

F [ef ]→ T [et]⇔



∃r ∈ Ndim(sR), 0 ≤ r < sR,
∃i ∈ Ndim(sp), 0 ≤ i < sp,

ef = ot +
(
r i

)
×

(
Pf

Ff

)
mod sf ,

et = ot +
(
r i

)
×

(
Pt

Ft

)
mod st,

(2)

where dim(s) is the number of dimensions of vector s and A[i]
is the element of index i of array A.

This process is powerful enough to link each element in the
source array to zero, one, or several elements in the destination
array and to express all the classical data-parallel distributions
(like those of HPF [7] for example, as we show below).

Fig. 4: The application model: a task with three arrays.



B. Examples

In order to clarify and ease the understanding of the seman-
tics description, the use of the « Distribute » stereotype will be
illustrated by some examples. The given HPF distributions will
be done considering that HPF can distribute tasks in the same
way as the data: for simplification, the directive will applied
to the xy repetitions.

1) Repetitive application: The application modeled in
Figure 4 is an extract of a picture analysis application. Starting
from a greyscale picture, the picture analysis application detects
the edges, and generates a black and white picture where white
pixels indicate an edge. The result can then be used in further
picture analysis. The edge detection of a picture is done in two
steps. First from the input picture, two similar computations
are carried out: one is done following the abscissa, the other
one is done following the ordinate. Secondly, the image is
obtained with an OR between each corresponding pixel of the
two produced images. Only this second part is presented here.

This is the same application as in Figure 1. In Figure 1,
ImageSegmentation was considered as a black-box: a coded
function which realizes the computation and which has only its
interface described at this high abstraction level. The drawback
of this simple view is that it is not possible to allocate the
computation onto more than one processor. In Figure 4, after
analysis of the code, the ImageSegmentation computation has
been decomposed into a repetition of the xy instance working
on small regular patterns. It leads to a {256,256} repetition of
xy which consumes two {5,3} patterns and produces a pattern
with the same shape. Such a decomposition allows the use
of the parallel execution platform in order to increase the
performance.

Fig. 5: A distribution of ImageSegmentation on a 4-processor SoC, a block of
64 × 256 repetitions is assigned to each processor for computing.

2) Distribution on a 4-processor architecture: As a simple
example, we extended the execution platform of Figure 1 to
contain 4 MIPS processors. To use this introduced parallelism,
the allocation has to be converted into a distribution. Figure 5
shows the result, xy, the repeated part of ImageSegmentation,

is distributed on the 4 processors by block. The first dimension
of xy is divided into 4 blocks, as expressed by the first value of
repetitionSpace. Each separation contains 64 non-overlapping
instances of xy, expressed by the patternShape and the first
value of the paving of the fromTiler. The second dimension of
xy is assigned to the processors, as expressed by the second
value of the repetitionSpace and the second value of the paving
of the the toTiler. The equivalent HPF distribution would look
like:
!HPF$ PROCESSORS P(4)

!HPF$ DISTRIBUTE xy(*,BLOCK) ONTO P

Fig. 6: Grid architecture of the execution platform

Fig. 7: A processing unit of the grid

Let us note that other ways exist to express the same
resulting distribution. For instance, with a repetitionShape of
{64,256} and a patternShape of {4}, we could obtain the same
distribution by swapping the first value between paving and
fitting of both tilers.

3) Grid execution platform: In order to illustrate other
possibilities of « Distribute », a different execution platform
is introduced. The targeted architecture is a massively multi-
processor System-on-Chip (Figure 6). It is composed of {16,16}
repetitions of processing units, which are connected to each
other by a toroidal topology. The interconnection topology is
modeled thanks to two « InterRepetition » connectors which
allow to specify the position of every neighbor of every instance
of the ProcessingUnit component. In this example, it specifies
that each potential instance is connected to its direct neighbors
in four directions: north, east, south, and west. It generates a
toroidal grid. Each processing unit (Figure 7) is composed of



a MIPS processor, a memory and a crossbar which allows the
communication in four directions for each computing unit. In
the following, the equivalences given in HPF are distributed
onto P defined by the directive:
!HPF$ PROCESSORS P(16,16)

4) Task distribution: With regard to performance on a
parallel system, it is necessary to achieve a good load-balancing
of the computation over the processors. In general, the goal is to
distribute fairly software repetitions over processors. However,
depending on the way the distribution is done, the locality of
the data and communications required for the computations
will very significantly influence the parallelism speed-up. The
optimal distribution of the task depends on the algorithm and
on the other distributions of the application. The « Distribute »
stereotype permits the designer to specify in detail how the
tasks should be allocated on the processors. A task distribution
regularly allocates a multidimensional array of tasks onto a
multidimensional array of hardware computing resource. The
distribution mechanism is illustrated by mapping the repeated
xy part onto the multi-processor grid in three different ways.

Fig. 8: Block distribution of the {256,256} repetitions of the application part
xy onto the {16,16} repetitions of the execution platform part p.

Firstly, in Figure 8 the repetitions of xy are distributed in
block along both dimensions. The processor [i, j] will execute
the 256 instances from [i×16, j×16] to [i×16+15, j×16+15].
The equivalent HPF syntax would be:
!HPF$ DISTRIBUTE xy(BLOCK,BLOCK) ONTO P

In Figure 9 the same application is mapped on the same
execution platform but following a [cyclic, cyclic] distribution.
Each set of 16×16 xy instances is spread over all the processors,
one instance per processor. In other words, the processor [i, j]
will execute the 256 instances [p × 16 + i, q × 16 + j] with p

Fig. 9: Cyclic distribution along the two dimensions.

and q integers between 0 and 255. The equivalent HPF syntax
would be:
!HPF$ DISTRIBUTE xy(CYCLIC,CYCLIC) ONTO P

Finally, in Figure 10, the application is distributed in a
k-cyclic way along with both dimensions. Blocks of 2 × 8
application instances are spread over each processor. The
processor [i, j] will execute the 256 instances contained in
the blocks from [(p × 16 + i) × 2, (q × 16 + j) × 8] to
[(p × 16 + i) × 2 + 1, (q × 16 + j) × 8 + 7] with p between
0 and 127 and q between 0 and 31. The equivalent HPF syntax
would be:
!HPF$ DISTRIBUTE xy(CYCLIC(8),CYCLIC(2)) ONTO P

5) Data distribution: The « Distribute » stereotype also
allows distribution of data. In the following, multidimensional
data arrays are mapped on instances of memory. On a
parallel application, one of the most important aspects affecting
performance is the data locality. Knowing that communications
between processors penalize the performance of parallel
applications, they should be reduced. So data have to be close
to the processor which needs it.

Figure 11 illustrates the data distribution of the IPV array.
We have supposed that the computation is distributed by block,
and that each computation works on an area of 5 × 3 pixels,
but also needs as input the neighbor pixels corresponding to
this area. So, each xy will need 7 × 5 pixels from IPV. This
is typical a requirement from a signal processing application.
So as to maximize data-locality, the resulting distribution is a
mapping of IPV as blocks of {82,50} on each memory of the
processing units shifted by {80,48}. The borders of each block
are duplicated on two processing units. The array is considered



Fig. 10: Task distribution 2-cyclic, 8-cyclic.

toroidal, therefore a border of each first block is shared with
the corresponding last block.

V. C

The MARTE profile provides an allocation mechanism
(which is compatible with the mechanism proposed by
SysML [13]) to enable the co-design of Systems-on-Chip. The
notion of repetition permits to keep a compact design for large
regular systems. « Distribute » leverages those two mechanisms
to provide the SoC designer the allocation of large applications
on parallel architecture with virtually no restrictions on the
way the distribution is performed. For example, the freedom of
the distribution encompasses all the expressivity available in
HPF. It allows the distribution of multidimensional repetitive
applicative structures to multidimensional repetitive hardware
structures. The fine tuning of the distributions, adapted to
the algorithm of the application, permits to get the optimal
performances from the system.
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